Inexact partial linearization methods for~network equilibrium problems
Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 1, pp. 43-60
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose some simplified modifications of the partial linearization method for network equilibrium problems with mixed demand. In these modifications, the auxiliary direction choice problem is solved approximately. In the modifications, the basic convergence properties of the original method are preserved, while the inexact solution of the auxiliary problems reduces the computational efforts. Preliminary numerical tests show the advantages and efficiency of our approach as compared with the exact variant of the method. Tab. 3, illustr. 2, bibliogr. 17.
Keywords:
network equilibrium problem, partial linearization method
Mots-clés : descent direction, inexact solution.
Mots-clés : descent direction, inexact solution.
@article{DA_2020_27_1_a2,
author = {I. V. Konnov and E. Laitinen and O. V. Pinyagina},
title = {Inexact partial linearization methods for~network equilibrium problems},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {43--60},
publisher = {mathdoc},
volume = {27},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2020_27_1_a2/}
}
TY - JOUR AU - I. V. Konnov AU - E. Laitinen AU - O. V. Pinyagina TI - Inexact partial linearization methods for~network equilibrium problems JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 43 EP - 60 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_1_a2/ LA - ru ID - DA_2020_27_1_a2 ER -
%0 Journal Article %A I. V. Konnov %A E. Laitinen %A O. V. Pinyagina %T Inexact partial linearization methods for~network equilibrium problems %J Diskretnyj analiz i issledovanie operacij %D 2020 %P 43-60 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2020_27_1_a2/ %G ru %F DA_2020_27_1_a2
I. V. Konnov; E. Laitinen; O. V. Pinyagina. Inexact partial linearization methods for~network equilibrium problems. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/DA_2020_27_1_a2/