Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_1_a2, author = {I. V. Konnov and E. Laitinen and O. V. Pinyagina}, title = {Inexact partial linearization methods for~network equilibrium problems}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {43--60}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_1_a2/} }
TY - JOUR AU - I. V. Konnov AU - E. Laitinen AU - O. V. Pinyagina TI - Inexact partial linearization methods for~network equilibrium problems JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 43 EP - 60 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_1_a2/ LA - ru ID - DA_2020_27_1_a2 ER -
%0 Journal Article %A I. V. Konnov %A E. Laitinen %A O. V. Pinyagina %T Inexact partial linearization methods for~network equilibrium problems %J Diskretnyj analiz i issledovanie operacij %D 2020 %P 43-60 %V 27 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2020_27_1_a2/ %G ru %F DA_2020_27_1_a2
I. V. Konnov; E. Laitinen; O. V. Pinyagina. Inexact partial linearization methods for~network equilibrium problems. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 1, pp. 43-60. http://geodesic.mathdoc.fr/item/DA_2020_27_1_a2/
[1] S. Dafermos, “Traffic equilibrium and variational inequalities”, Transp. Sci., 14:1 (1980), 42–54 | DOI | MR
[2] S. Dafermos, “The general multimodal network equilibrium problem with elastic demand”, Networks, 12:1 (1982), 57–72 | DOI | MR | Zbl
[3] A. Nagurney, Network economics: A variational inequality approach, Kluwer Acad. Publ., Dordrecht, 1999, 444 pp. | MR
[4] M. Patriksson, The traffic assignment problem: models and methods, Dover Publ., Mineola, NY, 2015, 240 pp.
[5] T. L. Magnanti, “Models and algorithms for predicting urban traffic equilibria”, Transportation Planning Models, North-Holland, Amsterdam, 1984, 153–185
[6] I. V. Konnov, O. V. Pinyagina, “Partial linearization method for network equilibrium problems with elastic demands”, Discrete Optimization and Operations Research, DOOR 2016, Proc. 9th Int. Conf. (Vladivostok, Russia, Sep. 19–23, 2016), Lect. Notes Comput. Sci., 9869, Springer, Heidelberg, 2016, 418–429 | DOI | MR | Zbl
[7] I. V. Konnov, “Simplified versions of the conditional gradient method”, Optimization, 67:12 (2018), 2275–2290 | DOI | MR | Zbl
[8] H. Mine, M. Fukushima, “A minimization method for the sum of a convex function and a continuously differentiable function”, J. Optim. Theor. Appl., 33 (1981), 9–23 | DOI | MR | Zbl
[9] M. Patriksson, “Cost approximation: A unified framework of descent algorithms for nonlinear programs”, SIAM J. Optim., 8 (1998), 561–582 | DOI | MR | Zbl
[10] M. Patriksson, Nonlinear programming and variational inequality problems: A unified approach, Kluwer, Dordrecht, 1999, 348 pp. | MR | Zbl
[11] K. Bredies, D. A. Lorenz, P. Maass, “A generalized conditional gradient method and its connection to an iterative shrinkage method”, Comput. Optim. Appl., 42 (2009), 173–193 | DOI | MR | Zbl
[12] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, J. S. Pang, “Decomposition by partial linearization: Parallel optimization of multi-agent systems”, IEEE Trans. Signal Process, 62 (2014), 641–656 | DOI | MR | Zbl
[13] I. V. Konnov, “On auction equilibrium models with network applications”, NETNOMICS: Economic Research and Electronic Networking, 16:1 (2015), 107–125 | DOI
[14] O. V. Pinyagina, “On a network equilibrium problem with mixed demand”, Discrete Optimization and Operations Research, DOOR 2016, Proc. 9th Int. Conf. (Vladivostok, Russia, Sep. 19–23, 2016), Lect. Notes Comput. Sci., 9869, Springer, Heidelberg, 2016, 578–583 | DOI | MR | Zbl
[15] O. V. Pinyagina, “The network equilibrium problem with mixed demand”, J. Appl. Ind. Math., 11:4 (2017), 554–563 | DOI | MR | Zbl
[16] D. P. Bertsekas, E. M. Gafni, “Projection methods for variational inequalities with application to the traffic assignment problem”, Nondifferential and Variational Techniques in Optimization, Springer, Heidelberg, 1982, 139–159 | DOI | MR
[17] A. B. Nagurney, “Comparative tests of multimodal traffic equilibrium methods”, Transp. Res., Part B: Methodological, 18:1 (1984), 469–485 | DOI