Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2020_27_1_a1, author = {D. V. Gribanov and D. S. Malyshev}, title = {Minimization of even conic functions on~the~two-dimensional integral lattice}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {17--42}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2020_27_1_a1/} }
TY - JOUR AU - D. V. Gribanov AU - D. S. Malyshev TI - Minimization of even conic functions on~the~two-dimensional integral lattice JO - Diskretnyj analiz i issledovanie operacij PY - 2020 SP - 17 EP - 42 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2020_27_1_a1/ LA - ru ID - DA_2020_27_1_a1 ER -
D. V. Gribanov; D. S. Malyshev. Minimization of even conic functions on~the~two-dimensional integral lattice. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 1, pp. 17-42. http://geodesic.mathdoc.fr/item/DA_2020_27_1_a1/
[1] A. Yu. Chirkov, “Minimization of a quasiconvex function on 2-dimensional lattice”, Vestn. Lobachevsky State Univ. Nizhny Novgorod, Ser. Model. Optim. Control, 2003, no. 1, 227–238
[2] A. Ahmadi, A. Olshevsky, P. Parrilo, J. Tsitsiklis, “NP-hardness of deciding convexity of quadratic polynomials and related problems”, Math. Program, 137:1–2 (2013), 453–476 | DOI | MR | Zbl
[3] D. Dadush, Integer programming, lattice algorithms, and deterministic volume estimation, Thes. ... doct. phylosophy, ProQuest LLC, Ann Arbor, MI; Georgia Institute of Technology, 2012, 280 pp. | MR
[4] D. Dadush, C. Peikert, S. Vempala, “Enumerative lattice algorithms in any norm via M-ellipsoid coverings”, Proc. 52nd Annu. IEEE Symp. Foundations of Computer Science (Palm Springs, CA, USA, Oct. 23–25, 2011), IEEE Comput. Soc., Washington, 2011, 580–589 | MR | Zbl
[5] L. Khachiyan, L. Porkolab, “Integer optimization on convex semialgebraic sets”, Discrete Comput. Geom., 23:2 (2000), 207–224 | DOI | MR | Zbl
[6] H. Lenstra, Math. Oper. Res., 8:4 (1983), 538–548 | DOI | MR | Zbl
[7] J. A. De Loera, R. Hemmecke, M. Koppe, R. Weismantel, “Integer polynomial optimization in fixed dimension”, Math. Oper. Res., 31:1 (2006), 147–153 | DOI | MR | Zbl
[8] S. Heinz, J. Complexity, 21:4 (2005), 543–556 | DOI | MR | Zbl
[9] S. Heinz, ESAIM Control Optim. Calc. Var., 14:4 (2008), 795–801 | DOI | MR | Zbl
[10] R. Hemmecke, S. Onn, R. Weismantel, “A polynomial oracle-time algorithm for convex integer minimization”, Math. Program., 126:1 (2011), 97–117 | DOI | MR | Zbl
[11] R. Hildebrand, M. Koppe, “A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity $2^{O(n\log n)}$”, Discrete Optim., 10:1 (2013), 69–84 | DOI | MR | Zbl
[12] T. Oertel, Integer convex minimization in low dimensions, Thes. ... doct. phylosophy, Eidgenos. Techn. Hochschule, Zurich, 2014, 127 pp.
[13] T. Oertel, C. Wagner, R. Weismantel, “Integer convex minimization by mixed integer linear optimization”, Oper. Res. Lett., 42:6 (2014), 424–428 | DOI | MR | Zbl
[14] A. Basu, T. Oertel, “Centerpoints: A link between optimization and convex geometry”, SIAM J. Optim., 27:2 (2017), 866–889 | DOI | MR | Zbl
[15] Chirkov A. Yu, D. V. Gribanov, D. S. Malyshev, P. M. Pardalos, S. I. Veselov, A. Yu. Zolotykh, “On the complexity of quasiconvex integer minimization problem”, J. Global Optim., 73:4 (2018), 761–788 | DOI | MR
[16] S. I. Veselov, D. V. Gribanov, N. Yu. Zolotykh, A. Yu. Chirkov, “Minimizing a symmetric quasiconvex function on a two-dimensional lattice”, J. Appl. Ind. Math., 12:3 (2018), 587–594 | DOI | MR | Zbl
[17] D. Micciancio, “Efficient reductions among lattice problems”, Proc. 19th Annu. ACM-SIAM Symp. Discrete Algorithms (San Francisco, CA, Jan. 20–22, 2008), SIAM, Philadelphia, PA, 2008, 84–93 | MR | Zbl
[18] D. Micciancio, P. Voulgaris, “A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations”, SIAM J. Comput., 42:3 (2010), 1364–1391 | DOI | MR
[19] D. Aggarwal, D. Dadush, O. Regev, N. Stephens-Davidowitz, “Solving the Shortest Vector Problem in $2^n$ time via discrete Gaussian sampling”, Proc. 47th Annu. ACM Symp. Theory of Computing (Portland, OR, USA, June 14–17, 2015), ACM, New York, 2015, 733–742 | MR | Zbl
[20] D. Aggarwal, D. Dadush, N. Stephens-Davidowitz, Solving the Closest Vector Problem in $2^n$ time — the discrete Gaussian strikes again!, Proc. 56th Annu. IEEE Symp. Foundations of Computer Science (Berkeley, CA, USA, Oct. 18–20, 2015), IEEE Comput. Soc., Washington, 2015, 563–582 | MR
[21] R. Graham, D. Knuth, O. Patashnik, Concrete mathematics — A foundation for computer science, Addison-Wesley, Reading, MA, 1994, 657 pp. | MR | Zbl
[22] J. Cassels, An introduction to the geometry of numbers, Springer-Verl., Berlin–Heidelberg, 1997, 343 pp. | MR | Zbl
[23] J. Edmonds, “Systems of distinct representatives and linear algebra”, J. Res. Nat. Bureau Stand. B. Math. Math. Phys., 71:4 (1967), 241–245 | DOI | MR | Zbl
[24] M. Grötschel, L. Lovász, A. Schrijver, Geometric algorithms and combinatorial optimization. Algorithms and Combinatorics, v. 2, Springer-Verl., Berlin–Heidelberg, 1993, 363 pp. | MR