Relationship between homogeneous bent~functions and Nagy graphs
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 121-131

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relationship between homogeneous bent functions and some intersection graphs of a special type that are called Nagy graphs and denoted by $\Gamma_{(n,k)}$. The graph $\Gamma_{(n,k)}$ is the graph whose vertices correspond to $\binom{n}{k}$ unordered subsets of size $k$ of the set $\{1,\dots,n\}$. Two vertices of $\Gamma_{(n,k)}$ are joined by an edge whenever the corresponding $k$-sets have exactly one common element. Those $n$ and $k$ for which the cliques of size $k+1$ are maximal in $\Gamma_{(n, k)}$ are identified. We obtain a formula for the number of cliques of size $k+1$ in $\Gamma_{(n, k)}$ for $n=(k+1)k/2$. We prove that homogeneous Boolean functions of $10$ and $28$ variables obtained by taking the complement to the cliques of maximal size in $\Gamma_{(10,4)}$ and $\Gamma_{(28,7)}$ respectively are not bent functions. Tab. 3, illustr. 2, bibliogr. 9.
Keywords: intersection graph, Nagy graph, homogeneous bent function
Mots-clés : maximal clique.
@article{DA_2019_26_4_a6,
     author = {A. S. Shaporenko},
     title = {Relationship between homogeneous bent~functions and {Nagy} graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {121--131},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2019_26_4_a6/}
}
TY  - JOUR
AU  - A. S. Shaporenko
TI  - Relationship between homogeneous bent~functions and Nagy graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 121
EP  - 131
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2019_26_4_a6/
LA  - ru
ID  - DA_2019_26_4_a6
ER  - 
%0 Journal Article
%A A. S. Shaporenko
%T Relationship between homogeneous bent~functions and Nagy graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 121-131
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2019_26_4_a6/
%G ru
%F DA_2019_26_4_a6
A. S. Shaporenko. Relationship between homogeneous bent~functions and Nagy graphs. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 121-131. http://geodesic.mathdoc.fr/item/DA_2019_26_4_a6/