Mots-clés : maximal clique.
@article{DA_2019_26_4_a6,
author = {A. S. Shaporenko},
title = {Relationship between homogeneous bent~functions and {Nagy} graphs},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {121--131},
year = {2019},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2019_26_4_a6/}
}
A. S. Shaporenko. Relationship between homogeneous bent functions and Nagy graphs. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 121-131. http://geodesic.mathdoc.fr/item/DA_2019_26_4_a6/
[1] O. S. Rothaus, “On “bent” functions”, J. Comb. Theory., Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[2] C. Qu, J. Seberry, J. Pieprzyk, “Homogeneous bent functions”, Discrete Appl. Math., 102:1-2 (2000), 133–139 | DOI | MR | Zbl
[3] C. Charnes, M. Rotteler, T. Beth, “Homogeneous bent functions, invariants, and designs”, Des., Codes Cryptogr., 26:1-2 (2002), 139–154 | DOI | MR | Zbl
[4] A. Bernasconi, B. Codenotti, “Spectral analysis of Boolean functions as a graph eigenvalue problem”, IEEE Trans. Comput., 48:3 (1999), 345–351 | DOI | MR | Zbl
[5] A. Bernasconi, B. Codenotti, J. M. Vanderkam, “A characterization of bent functions in terms of strongly regular graphs”, IEEE Trans. Comput., 50:9 (2001), 984–985 | DOI | MR | Zbl
[6] N. A. Kolomeec, “An upper bound for the number of bent functions at distance $2^k$ from an arbitrary bent function of 2k variables”, Prikl. Diskretn. Mat., 2014, no. 3, 28–39 (Russian)
[7] N. A. Kolomeec, “On connectivity of the minimal distance graph for the set of bent functions”, Prikl. Diskretn. Mat., Suppl., 2015, no. 8, 33–34 (Russian)
[8] E. P. Korsakova, “Some classification of the graphs for quadratic bent functions of 6 variables”, Diskretn. Anal. Issled. Oper., 20:5 (2013), 45–47 (Russian) | MR
[9] N. N. Tokareva, Bent functions: results and applications to cryptography, Acad. Press, Amsterdam, 2015, 220 pp. | MR | Zbl