On a relation between the depth and complexity of~monotone Boolean formulas
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 108-120
Voir la notice de l'article provenant de la source Math-Net.Ru
We present a sequence of monotone Boolean functions whose
depth over the basis $\{\vee,\wedge\}$ is $c>1.06$
times greater than the logarithm of the formula complexity. Tab. 1, bibliogr. 24.
Keywords:
Boolean formula, depth, complexity, monotone function.
@article{DA_2019_26_4_a5,
author = {I. S. Sergeev},
title = {On a relation between the depth and complexity of~monotone {Boolean} formulas},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {108--120},
publisher = {mathdoc},
volume = {26},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2019_26_4_a5/}
}
TY - JOUR AU - I. S. Sergeev TI - On a relation between the depth and complexity of~monotone Boolean formulas JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 108 EP - 120 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_4_a5/ LA - ru ID - DA_2019_26_4_a5 ER -
I. S. Sergeev. On a relation between the depth and complexity of~monotone Boolean formulas. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 108-120. http://geodesic.mathdoc.fr/item/DA_2019_26_4_a5/