Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_4_a3, author = {A. A. Romanova and V. V. Servakh}, title = {Complexity of cyclic job shop scheduling problems for identical jobs with no-wait constraints}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {56--73}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2019_26_4_a3/} }
TY - JOUR AU - A. A. Romanova AU - V. V. Servakh TI - Complexity of cyclic job shop scheduling problems for identical jobs with no-wait constraints JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 56 EP - 73 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_4_a3/ LA - ru ID - DA_2019_26_4_a3 ER -
%0 Journal Article %A A. A. Romanova %A V. V. Servakh %T Complexity of cyclic job shop scheduling problems for identical jobs with no-wait constraints %J Diskretnyj analiz i issledovanie operacij %D 2019 %P 56-73 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2019_26_4_a3/ %G ru %F DA_2019_26_4_a3
A. A. Romanova; V. V. Servakh. Complexity of cyclic job shop scheduling problems for identical jobs with no-wait constraints. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 56-73. http://geodesic.mathdoc.fr/item/DA_2019_26_4_a3/
[1] E. A. Bobrova, A. A. Romanova, V. V. Servakh, “The complexity of the cyclic job shop problem with identical jobs”, Diskretn. Anal. Issled. Oper., 20:4 (2013), 3–14 (Russian) | MR | Zbl
[2] A. A. Romanova, V. V. Servakh, “Optimization of identical jobs production on the base of cyclic schedules”, Diskretn. Anal. Issled. Oper., 15:5 (2008), 47–60 (Russian) | Zbl
[3] N. G. Hall, T. E. Lee, M. E. Posner, “The complexity of cyclic shop scheduling problems”, J. Sched., 5 (2002), 307–327 | DOI | MR | Zbl
[4] C. Hanen, “Study of a NP-hard cyclic scheduling problem: the recurrent jobshop”, Eur. J. Oper. Res., 71 (1994), 82–101 | DOI
[5] S. T. McCormick, U. S. Rao, “Some complexity results in cyclic scheduling”, Math. Comput. Modelling, 20 (1994), 107–122 | DOI | MR | Zbl
[6] M. Middendorf, V. Timkovsky, “On scheduling cycle shops: classification, complexity and approximation”, J. Sched., 5 (2002), 135–169 | DOI | MR | Zbl
[7] R. Roundy, “Cyclic schedules for job shops with identical jobs”, Math. Oper. Res., 17:4 (1992), 842–865 | DOI | MR | Zbl
[8] K. A. Aldakhilallah, R. Ramesh, “Cyclic scheduling heuristics for a reentrant job shop manufacturing environment”, Int. J. Prod. Res., 39 (2001), 2635–2675 | DOI
[9] T. Boudoukh, M. Penn, G. Weiss, “Scheduling job shops with some identical or similar jobs”, J. Sched., 4 (2001), 177–199 | DOI | MR | Zbl
[10] P. Brucker, T. Kampmeyer, “Tabu search algorithms for cyclic machine scheduling problems”, J. Sched., 8 (2005), 303–322 | DOI | MR | Zbl
[11] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | Zbl
[12] V. Kats, E. Levner, “Cyclic scheduling in a robotic production line”, J. Sched., 5 (2002), 23–41 | DOI | MR | Zbl
[13] V. S. Aizenshtat, “Multi-operator cyclic processes”, Dokl. Nats. Akad. Nauk Belarus, 7:4 (1963), 224–227 (Russian) | Zbl
[14] V. S. Tanaev, “A scheduling problem for a flowshop line with a single operator”, Inzh. Fiz. Zh., 7:3 (1964), 111–114 (Russian)