Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_3_a4, author = {F. S. Stonyakin and M. Alkousa and A. N. Stepanov and A. A. Titov}, title = {Adaptive mirror descent algorithms for~convex~and strongly convex optimization problems with~functional constraints}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {88--114}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2019_26_3_a4/} }
TY - JOUR AU - F. S. Stonyakin AU - M. Alkousa AU - A. N. Stepanov AU - A. A. Titov TI - Adaptive mirror descent algorithms for~convex~and strongly convex optimization problems with~functional constraints JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 88 EP - 114 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_3_a4/ LA - ru ID - DA_2019_26_3_a4 ER -
%0 Journal Article %A F. S. Stonyakin %A M. Alkousa %A A. N. Stepanov %A A. A. Titov %T Adaptive mirror descent algorithms for~convex~and strongly convex optimization problems with~functional constraints %J Diskretnyj analiz i issledovanie operacij %D 2019 %P 88-114 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2019_26_3_a4/ %G ru %F DA_2019_26_3_a4
F. S. Stonyakin; M. Alkousa; A. N. Stepanov; A. A. Titov. Adaptive mirror descent algorithms for~convex~and strongly convex optimization problems with~functional constraints. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 3, pp. 88-114. http://geodesic.mathdoc.fr/item/DA_2019_26_3_a4/
[1] Ben-Tal A., Nemirovski A., “Robust truss topology design via semidefinite programming”, SIAM J. Optim., 7:4 (1997), 991–1016 | DOI | MR | Zbl
[2] Nesterov Yu., Shpirko S., “Primal-dual subgradient methods for huge-scale linear conic problem”, SIAM J. Optim., 24:3 (2014), 1444–1457 | DOI | MR | Zbl
[3] Nesterov Yu., Introductory lectures on convex optimization: A basic course, Appl. Optim., 87, Kluwer Acad. Publ., Dordrecht, 2004 | DOI | MR | Zbl
[4] F. P. Vasil'ev, Optimization Methods, v. 1, MTsNMO, M., 2011 (Russian)
[5] F. P. Vasil'ev, Optimization Methods, v. 2, MTsNMO, M., 2011 (Russian)
[6] Lan G., “Gradient sliding for composite optimization”, Math. Program., 159:1–2 (2016), 201–235 | DOI | MR | Zbl
[7] Beck A., Teboulle M., “Mirror descent and nonlinear projected subgradient methods for convex optimization”, Oper. Res. Lett., 31:3 (2003), 167–175 | DOI | MR | Zbl
[8] A. Nemirovskii, D. Yudin, “Efficient methods for large-scale convex optimization problems”, Ekonomika Mat. Metody, 1979, no. 2, 135–152 (Russian)
[9] A. Nemirovskii, D. Yudin, Problem Complexity and Method Efficiency in Optimization, J. Wiley Sons, New York, 1983 | MR
[10] N. Z. Shor, “Application of generalized gradient descent in block programming”, Kibernetika, 1967, no. 3, 53–55 (Russian) | Zbl
[11] Polyak B. T., “A general method of solving extremum problems”, Sov. Math. Dokl., 8:3 (1967), 593–597 | MR | Zbl
[12] Beck A., Ben-Tal A., Guttmann-Beck N., Tetruashvili L., “The CoMirror algorithm for solving nonsmooth constrained convex problems”, Oper. Res. Lett., 38:6 (2010), 493–498 | DOI | MR | Zbl
[13] Ben-Tal A., Nemirovski A., Lectures on modern convex optimization, SIAM, Philadelphia, PA, 2001 | MR | Zbl
[14] Bayandina A., Dvurechensky P., Gasnikov A., Stonyakin F., Titov A., “Mirror descent and convex optimization problems with non-smooth inequality constraints”, Large-Scale and Distributed Optimization, Lect. Notes Math., 2227, Springer, Cham, 2018, 181–213 | DOI | MR | Zbl
[15] F. S. Stonyakin, M. S. Alkousa, A. N. Stepanov, M. A. Barinov, “Adaptive mirror descent algorithms in convex programming problems with Lipschitz constraints”, Trudy Inst. Mat. Mekh., 24, no. 2, 2018, 266–279 (Russian) | MR
[16] Titov A. A., Stonyakin F. S., Gasnikov A. V., Alkousa M. S., “Mirror descent and constrained online optimization problems”, Optimization and Applications, Rev. Sel. Pap. 9th Int. Conf. OPTIMA-2018 (Petrovac, Montenegro, Oct. 1–5, 2018), Commun. Comput. Inform. Sci., 974, Springer, Cham, 2018, 64–78 | DOI
[17] Nesterov Yu., Subgradient methods for convex functions with nonstandard growth properties, , 2016 http://mathnet.ru/PresentFiles/16179/growthbm_nesterov.pdf
[18] Stonyakin F. S., Titov A. A., “One mirror descent algorithm for convex constrained optimization problems with non-standard growth properties”, Proc. School-Seminar on Optimization Problems and Their Applications (Omsk, Russia, July 8–14, 2018), CEUR Workshop Proc., 2098, RWTH Aachen Univ., Aachen, 2018, 372–384 http://ceur-ws.org/Vol-2098
[19] Nesterov Yu., “A method of solving a convex programming problem with convergence rate $O(1/k^2)$”, Sov. Math. Dokl., 27:2 (1983), 372–376 | MR | Zbl
[20] Juditsky A., Nemirovski A., “First order methods for non-smooth convex large-scale optimization, I: General purpose methods”, Optimization for machine learning, MIT Press, Cambridge, MA, 2012, 121–148
[21] A. S. Bayandina, A. V. Gasnikov, E. V. Gasnikova, S. V. Matsievsky, “Primal-dual mirror descent for the stochastic programming problems with functional constraints”, Comput. Math. Math. Phys., 58:11 (2018), 1728–1736 | MR | Zbl
[22] Meng X., Chen H., Accelerating Nesterov's method for strongly convex functions with Lipschitz gradient, Cornell Univ. Libr. e-Print Archive, 2011, arXiv: 1109.6058