Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_3_a3, author = {R. Yu. Simanchev and I. V. Urazova and Yu. A. Kochetov}, title = {The branch and cut method for~the~clique~partitioning~problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {60--87}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2019_26_3_a3/} }
TY - JOUR AU - R. Yu. Simanchev AU - I. V. Urazova AU - Yu. A. Kochetov TI - The branch and cut method for~the~clique~partitioning~problem JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 60 EP - 87 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_3_a3/ LA - ru ID - DA_2019_26_3_a3 ER -
%0 Journal Article %A R. Yu. Simanchev %A I. V. Urazova %A Yu. A. Kochetov %T The branch and cut method for~the~clique~partitioning~problem %J Diskretnyj analiz i issledovanie operacij %D 2019 %P 60-87 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2019_26_3_a3/ %G ru %F DA_2019_26_3_a3
R. Yu. Simanchev; I. V. Urazova; Yu. A. Kochetov. The branch and cut method for~the~clique~partitioning~problem. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 3, pp. 60-87. http://geodesic.mathdoc.fr/item/DA_2019_26_3_a3/
[1] Wakabayashi Y., Aggregation of binary relations: Algorithmic and polyhedral investigations, Master Thesis, Univ. Augsburg, West Germany, 1986 | Zbl
[2] Brimberg J., Janicijevic S., Mladenovic N., Urosevic D., “Solving the clique partitioning problem as a maximally diverse grouping problem”, Optim. Lett., 11 (2017), 1123–1135 | DOI | MR | Zbl
[3] Brusco M. J., Kohn H. F., “Clustering qualitative data based on binary equivalence relations: neighborhood search heuristics for the clique partitioning problem”, Psychometrika, 74 (2009), 685–703 | DOI | MR | Zbl
[4] Marcotorchino F., Michaud P., “Heuristic approach to the similarity aggregation problem”, Methods Oper. Res., 43 (1981), 395–404 | Zbl
[5] Ham I., Hitomi K., Yoshida T., Group technology: applications to production management, Kluwer Acad. Publ., Dordrecht, 1988
[6] Oosten M., Rutten J. H. G. C., Spieksma F. C. R., “The clique partitioning problem: facets and patching facets”, J. Networks, 38:4 (2001), 209–226 | DOI | MR | Zbl
[7] Fortunato S., “Community detection in graphs”, Phys. Rep., 486:3 (2010), 75–174 | DOI | MR
[8] Bocker S., Briesemeister S., Klau G. W., “Exact algorithms for cluster editing: evaluation and experiments”, Algorithmica, 60 (2011), 316–334 | DOI | MR | Zbl
[9] Grotschel M., Wakabayashi Y., “A cutting plane algorithm for a clustering problem”, Math. Program. Ser. B, 45 (1989), 59–96 | DOI | MR | Zbl
[10] Grotschel M., Wakabayashi Y., “Facets of the clique partitioning polytope”, Math. Program., 47 (1990), 367–387 | DOI | MR | Zbl
[11] Grotschel M., Wakabayashi Y., “Composition of facets of the clique partitioning polytope”, Topics in Combinatorics and Graph Theory, Physica-Verl., Heidelberg, 1990, 271–284 | DOI | MR
[12] R. Yu. Simanchev, I. V. Urazova, “On the faces of the graph approximation problem polytope”, J. Appl. Industr. Math., 9:2 (2015), 283–291 | DOI | MR | Zbl
[13] Urazova I. V., Simanchev R. Yu., “Separation problem for $k$-parachutes”, Supp. Proc. DOOR (Vladivostok, Russia, Sept. 19–23, 2016), CEUR Workshop Proceedings, 1623, 2016, 109–114 http://ceur-ws.org/Vol-1623/paperco16.pdf
[14] Harary F., “On the notion of balance of a signed graph”, Mich. Math. J., 2 (1955), 143–146 | MR
[15] G. Sh. Fridman, “A graph approximation problem”, Upravlyaemye Sistemy, 8 (1971), 73–75 (Russian)
[16] Zahn C. T., “Approximating symmetric relations by equivalence relations”, J. Soc. Ind. Appl. Math., 12:4 (1964), 840–847 | DOI | MR | Zbl
[17] Křivánek M., Morávek J., “NP-hard problems in hierarchical-tree clustering”, Acta Inform., 23 (1986), 311–323 | DOI | MR
[18] Bansal N., Blum A., Chawla S., “Correlation clustering”, Machine Learn., 56 (2004), 89–113 | DOI | MR | Zbl
[19] Ben-Dor A., Shamir R., Yakhimi Z., “Clustering gene expression patterns”, J. Comput. Biol., 6:3–4 (1999), 281–297 | DOI
[20] Shamir R., Sharan R., Tsur D., “Cluster graph modification problems”, Discrete Appl. Math., 144:1–2 (2004), 173–182 | DOI | MR | Zbl
[21] A. A. Ageev, V. P. Il'ev, A. V. Kononov, A. S. Talevnin, “Computational complexity of the graph approximation problem”, J. Appl. Indust. Math., 1:1 (2007), 1–8 | DOI
[22] Charikar M., Guruswami V., Wirth A., “Clustering with qualitative information”, J. Comput. Syst. Sci., 71:3 (2005), 360–383 | DOI | MR | Zbl
[23] Giotis I., Guruswami V., “Correlation clustering with a fixed number of clusters”, Theory Comput., 2:1 (2006), 249–266 | DOI | MR | Zbl
[24] Ailon N., Charikar M., Newman A., “Aggregating inconsistent information: ranking and clustering”, J. ACM, 55:5 (2008), 1–27 | DOI | MR
[25] Van Zuylen A., Williamson D. P., “Deterministic pivoting algorithms for constrained ranking and clustering problems”, Math. Oper. Res., 34:3 (2009), 594–620 | DOI | MR | Zbl
[26] R. Yu. Simanchev, I. V. Urazova, “Scheduling unit-time jobs on the parallel processors polytope”, Diskretn. Anal. Issled. Oper., 18:11 (2011), 85–97 (Russian) | MR | Zbl
[27] Padberg M. W., Rinaldi G., “Facet identification for the symmetric traveling salesman polytope”, Math. Program., 47 (1990), 219–257 | DOI | MR | Zbl
[28] Karp R. M., Papadimitriu C. H., “On linear characterizations of combinatorial optimization problems”, SIAM J. Comput., 11 (1982), 620–632 | DOI | MR | Zbl
[29] Alekseeva E., Kochetov Yu., Plyasunov A., “Complexity of local search for the $p$-median problem”, Eur. J. Oper. Res., 2008, no. 191, 736–752 | DOI | MR | Zbl
[30] Iellamo S., Alekseeva E., Chen L., Coupechoux M., Kochetov Yu., “Competitive location in cognitive radio networks”, 4OR, 13:1 (2015), 81–110 | DOI | MR | Zbl
[31] Mladenović N., Brimberg J., Hansen P., Moreno-Pérez J. A., “The $p$-median problem: a survey of metaheuristic approaches”, Eur. J. Oper. Res., 179:3 (2007), 927–939 | DOI | MR | Zbl
[32] Diakova Z., Kochetov Yu., “A double VNS heuristic for the facility location and pricing problem”, Electron. Notes Discrete Math., 2012, no. 39, 29–34 | DOI | MR | Zbl