$2$-Factors without close edges in~the~$n$-dimensional cube
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 3, pp. 5-26

Voir la notice de l'article provenant de la source Math-Net.Ru

We say that two edges in the hypercube are close if their endpoints form a 2-dimensional subcube. We consider the problem of constructing a 2-factor not containing close edges in the hypercube graph. For solving this problem, we use the new construction for building 2-factors which generalizes the previously known stream construction for Hamiltonian cycles in a hypercube. Owing to this construction, we create a family of 2-factors without close edges in cubes of all dimensions starting from $10$, where the length of the cycles in the obtained 2-factors grows together with the dimension. Tab. 5, bibliogr. 12.
Mots-clés : $n$-dimensional hypercube
Keywords: perfect matching, $2$-factor.
@article{DA_2019_26_3_a0,
     author = {I. S. Bykov},
     title = {$2${-Factors} without close edges in~the~$n$-dimensional cube},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--26},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2019_26_3_a0/}
}
TY  - JOUR
AU  - I. S. Bykov
TI  - $2$-Factors without close edges in~the~$n$-dimensional cube
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 5
EP  - 26
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2019_26_3_a0/
LA  - ru
ID  - DA_2019_26_3_a0
ER  - 
%0 Journal Article
%A I. S. Bykov
%T $2$-Factors without close edges in~the~$n$-dimensional cube
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 5-26
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2019_26_3_a0/
%G ru
%F DA_2019_26_3_a0
I. S. Bykov. $2$-Factors without close edges in~the~$n$-dimensional cube. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 3, pp. 5-26. http://geodesic.mathdoc.fr/item/DA_2019_26_3_a0/