Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_3_a0, author = {I. S. Bykov}, title = {$2${-Factors} without close edges in~the~$n$-dimensional cube}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--26}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2019_26_3_a0/} }
I. S. Bykov. $2$-Factors without close edges in~the~$n$-dimensional cube. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 3, pp. 5-26. http://geodesic.mathdoc.fr/item/DA_2019_26_3_a0/
[1] I. S. Bykov, “On locally balanced Gray codes”, J. Appl. Indust. Math., 10:1 (2016), 78–85 | DOI | MR | Zbl
[2] A. A. Evdokimov, “Chain of maximal length in a unitary $n$-dimensional cube”, Math. Notes, 6 (1969), 642–648 | DOI | MR
[3] D. S. Krotov, “Inductive construction of perfect ternary constant-weight codes with distance 3”, Problems Inform. Transmission, 37:1 (2001), 1–9 | DOI | MR | Zbl
[4] A. L. Perezhogin, “On locally isometric coding of natural numbers”, Diskretn. Anal. Issled. Oper., 3:4 (1996), 69–76 (Russian) | MR | Zbl
[5] A. L. Perezhogin, “On special perfect matchings in a Boolean cube”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:4 (2005), 51–59 (Russian) | MR | Zbl
[6] A. L. Perezhogin, V. N. Potapov, “On the number of Hamiltonian cycles in a Boolean cube”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:2 (2001), 52–62 (Russian) | MR | Zbl
[7] Fink J., “Perfect matchings extend to Hamilton cycles in hypercubes”, J. Comb. Theory, Ser. B, 97:6 (2007), 1074–1076 | DOI | MR | Zbl
[8] Goddyn L., Gvozdjak P., “Binary Gray codes with long bit runs”, Electron. J. Comb., 10 (2003) | MR | Zbl
[9] Gregor P., Mutze T., Nummenpalo J., “A short proof of the middle levels theorem”, Discrete Anal., 2018 | DOI | MR
[10] Kautz W. H., “Unit-distance error-checking codes”, IRE Trans. Electron. Comput., EC-7:2 (1958), 179–180 | DOI
[11] Van Zanten A. J., Haryanto L., “Sets of disjoint snakes based on a Reed-Muller code and covering the hypercube”, Des. Codes Cryptogr., 48:3 (2008), 207–229 | DOI | MR | Zbl
[12] Zemor G., “An upper bound on the size of the snake-in-the-box”, Combinatorica, 17:2 (1997), 287–298 | DOI | MR | Zbl