Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 129-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

A collection $(A_1,\dots,A_{k+l})$ of subsets of an interval $[1,n]$ of naturals is called $(k,l)$-solution-free if there is no set $(a_1,\dots,$ $a_{k+l})\in A_1\times\dots\times A_{k+l}$ that is a solution to the equation $x_1+\dots+x_k=x_{k+1}+\dots+x_{k+l}$. We obtain the asymptotics for the logarithm of the number of sets $(k,l)$-free of solutions in an interval $[1,n]$ of naturals. Bibliogr. 17.
Keywords: set, coset, characteristic function
Mots-clés : group, progression.
@article{DA_2019_26_2_a6,
     author = {A. A. Sapozhenko and V. G. Sargsyan},
     title = {Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {129--144},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2019_26_2_a6/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
AU  - V. G. Sargsyan
TI  - Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 129
EP  - 144
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2019_26_2_a6/
LA  - ru
ID  - DA_2019_26_2_a6
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%A V. G. Sargsyan
%T Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 129-144
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2019_26_2_a6/
%G ru
%F DA_2019_26_2_a6
A. A. Sapozhenko; V. G. Sargsyan. Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 129-144. http://geodesic.mathdoc.fr/item/DA_2019_26_2_a6/

[1] A. A. Sapozhenko, “On the number of sum-free sets in Abelian groups”, Vestn. Mosk. Univ., Ser. 1, 4 (2002), 14–17 (in Russian) | MR | Zbl

[2] A. A. Sapozhenko, “The Cameron–Erdös conjecture”, Dokl. Akad. Nauk, 393:6 (2003), 749–752 (in Russian) | MR

[3] A. A. Sapozhenko, “Solution of the Cameron–Erdös problem for groups of prime order”, Comput. Math. Math. Phys., 49:6 (2009), 1435–1441 | DOI | MR | Zbl

[4] V. G. Sargsyan, “Asymptotics of the logarithm of the number of $(k,l)$-sum-free sets in an Abelian group”, Discrete Math. Appl., 25:2 (2014), 93–99 | DOI | MR

[5] Alon N., “Independent sets in regular graphs and sum-free subsets of abelian groups”, Isr. J. Math., 73 (1991), 247–256 | DOI | MR | Zbl

[6] Bilu Yu., “Sum-free sets and related sets”, Combinatorica, 18:4 (1998), 449–459 | DOI | MR | Zbl

[7] Calkin N. J., “On the number of sum-free set”, Bull. Lond. Math. Soc., 22 (1990), 140–144 | DOI | MR

[8] Calkin N. J., Taylor A. C., “Counting sets of integers, no $k$ of which sum to another”, J. Number Theory, 57 (1996), 323–327 | DOI | MR | Zbl

[9] Calkin N. J., Thomson J. M., “Counting generalized sum-free sets”, J. Number Theory, 68 (1998), 151–160 | DOI | MR

[10] Cameron P. J., Erdös P., “On the number of sets of integers with various properties”, Number Theory, Proc. 1st Conf. Can. Number Theory Assoc. (Banff, Canada, April 17–27, 1988), de Gruyter, Berlin, 1990, 61–79 | MR

[11] Green B., “The Cameron–Erdös conjecture”, Bull. Lond. Math. Soc., 36:6 (2004), 769–778 | DOI | MR | Zbl

[12] Green B., “A Szemerédi-type regularity lemma in abelian groups”, Geom. Funct. Anal., 15:2 (2005), 340–376 | DOI | MR | Zbl

[13] Green B., Ruzsa I., “Sum-free sets in abelian groups”, Isr. J. Math., 147 (2005), 157–188 | DOI | MR | Zbl

[14] Lev V. F., “Sharp estimates for the number of sum-free sets”, J. Reine Angew. Math., 555 (2003), 1–25 | DOI | MR | Zbl

[15] Lev V. F., Łuczak T., Schoen T., “Sum-free sets in abelian groups”, Isr. J. Math., 125 (2001), 347–367 | DOI | MR | Zbl

[16] Lev V. F., Schoen T., “Cameron–Erdös modulo a prime”, Finite Fields Appl., 8:1 (2002), 108–119 | DOI | MR | Zbl

[17] Schoen T., “A note on the number of $(k,l)$-sum-free sets”, Electron. J. Comb., 17:1 (2000), 1–8 | MR