Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 129-144

Voir la notice de l'article provenant de la source Math-Net.Ru

A collection $(A_1,\dots,A_{k+l})$ of subsets of an interval $[1,n]$ of naturals is called $(k,l)$-solution-free if there is no set $(a_1,\dots,$ $a_{k+l})\in A_1\times\dots\times A_{k+l}$ that is a solution to the equation $x_1+\dots+x_k=x_{k+1}+\dots+x_{k+l}$. We obtain the asymptotics for the logarithm of the number of sets $(k,l)$-free of solutions in an interval $[1,n]$ of naturals. Bibliogr. 17.
Keywords: set, coset, characteristic function
Mots-clés : group, progression.
@article{DA_2019_26_2_a6,
     author = {A. A. Sapozhenko and V. G. Sargsyan},
     title = {Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {129--144},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2019_26_2_a6/}
}
TY  - JOUR
AU  - A. A. Sapozhenko
AU  - V. G. Sargsyan
TI  - Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 129
EP  - 144
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2019_26_2_a6/
LA  - ru
ID  - DA_2019_26_2_a6
ER  - 
%0 Journal Article
%A A. A. Sapozhenko
%A V. G. Sargsyan
%T Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 129-144
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2019_26_2_a6/
%G ru
%F DA_2019_26_2_a6
A. A. Sapozhenko; V. G. Sargsyan. Asymptotics for the logarithm of~the~number of~$(k,l)$-solution-free collections in~an~interval of~naturals. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 129-144. http://geodesic.mathdoc.fr/item/DA_2019_26_2_a6/