Estimating the stability radius of~an~optimal~solution to the simple assembly~line~balancing problem
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 79-97

Voir la notice de l'article provenant de la source Math-Net.Ru

The simple assembly line balancing problem (SALBP) is considered. We describe the special class of problems with an infinitely large stability radius of the optimal balance. For other tasks we received the lower and the upper reachable estimates of the stability radius of optimal balances in the case of an independent perturbation of the parameters of the problem. Bibliogr. 24.
Keywords: sensitivity analysis, uncertain operation duration, assembly line, stability radius
Mots-clés : optimal balance.
@article{DA_2019_26_2_a3,
     author = {K. G. Kuzmin and V. R. Haritonova},
     title = {Estimating the stability radius of~an~optimal~solution to the simple assembly~line~balancing problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {79--97},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2019_26_2_a3/}
}
TY  - JOUR
AU  - K. G. Kuzmin
AU  - V. R. Haritonova
TI  - Estimating the stability radius of~an~optimal~solution to the simple assembly~line~balancing problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 79
EP  - 97
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2019_26_2_a3/
LA  - ru
ID  - DA_2019_26_2_a3
ER  - 
%0 Journal Article
%A K. G. Kuzmin
%A V. R. Haritonova
%T Estimating the stability radius of~an~optimal~solution to the simple assembly~line~balancing problem
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 79-97
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2019_26_2_a3/
%G ru
%F DA_2019_26_2_a3
K. G. Kuzmin; V. R. Haritonova. Estimating the stability radius of~an~optimal~solution to the simple assembly~line~balancing problem. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 79-97. http://geodesic.mathdoc.fr/item/DA_2019_26_2_a3/