Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_2_a3, author = {K. G. Kuzmin and V. R. Haritonova}, title = {Estimating the stability radius of~an~optimal~solution to the simple assembly~line~balancing problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {79--97}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2019_26_2_a3/} }
TY - JOUR AU - K. G. Kuzmin AU - V. R. Haritonova TI - Estimating the stability radius of~an~optimal~solution to the simple assembly~line~balancing problem JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 79 EP - 97 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_2_a3/ LA - ru ID - DA_2019_26_2_a3 ER -
%0 Journal Article %A K. G. Kuzmin %A V. R. Haritonova %T Estimating the stability radius of~an~optimal~solution to the simple assembly~line~balancing problem %J Diskretnyj analiz i issledovanie operacij %D 2019 %P 79-97 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2019_26_2_a3/ %G ru %F DA_2019_26_2_a3
K. G. Kuzmin; V. R. Haritonova. Estimating the stability radius of~an~optimal~solution to the simple assembly~line~balancing problem. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 79-97. http://geodesic.mathdoc.fr/item/DA_2019_26_2_a3/
[1] E. N. Gordeev, “Comparison of three approaches to studying stability of solutions to problems of discrete optimization and computational geometry”, J. Appl. Ind. Math., 9:3 (2015), 358–366 | DOI | MR | Zbl
[2] V. A. Emelichev, K. G. Kuzmin, “A general approach to studying the stability of a Pareto optimal solution of a vector integer linear programming problem”, Discrete Math. Appl., 17:4 (2007), 349–354 | DOI | DOI | MR | Zbl
[3] V. A. Emelichev, K. G. Kuzmin, “On a type of stability of a milticriteria integer linear programming problem in the case of a monotone norm”, J. Comput. Syst. Sci. Int., 46:5 (2007), 714–720 | DOI | MR
[4] V. A. Emelichev, K. G. Kuzmin, “Stability criteria in vector combinatorial bottleneck problems in terms of binary relations”, Cybern. Syst. Anal., 44:3 (2008), 397–404 | DOI | MR | Zbl
[5] V. A. Emelichev, K. G. Kuzmin, “Stability analysis of the efficient solution to a vector problem of a maximum cut”, Diskretn. Anal. Issled. Oper., 20:4 (2013), 27–35 | MR | Zbl
[6] V. A. Emelichev, D. P. Podkopaev, “Stability and regularization of vector integer linear programming problems”, Diskretn. Anal. Issled. Oper., Ser. 2, 8:1 (2001), 47–69 | MR | Zbl
[7] K. G. Kuzmin, “A general approach to the calculation of stability radii for the max-cut problem with multiple criteria”, J. Appl. Ind. Math., 9:4 (2015), 527–539 | DOI | MR | Zbl
[8] K. G. Kuzmin, V. R. Haritonova, Proc. 10th Int. Conf. “Discrete Models in the Theory of Control Systems” (Moscow, Russia, May 23–25, 2018), MAKS Press, M., 2018
[9] I. V. Sergienko, V. P. Shilo, Discrete Optimization Problems: Problems, Solution Methods, Research, Naukova dumka, Kiev, 2003
[10] Chica M., Gordon O., Damas S., Bautista J., “A robustness information and visualization model for time and space assembly line balancing under uncertain demand”, Int. J. Prod. Econ., 145 (2013), 761–772 | DOI
[11] Emelichev V. A., Nikulin Yu. V., “Aspects of stability for multicriteria quadratic problems of Boolean programming”, Bul. Acad. Ştiinţe Repub. Mold., Mat., 2018, no. 2, 30–40 | MR
[12] Emelichev V. A., Nikulin Yu. V., “Strong stability measures for multicriteria quadratic integer programming problem of finding extremum solutions”, Comput. Sci. J. Mold., 26:2 (2018), 115–125 | MR
[13] Emelichev V. A., Podkopaev D. P., “Quantitative stability analysis for vector problems of 0–1 programming”, Discrete Optim., 7:1–2 (2010), 48–63 | DOI | MR | Zbl
[14] Gamberini R., Grassi A., Rimini B., “A new multiobjective heuristic algorithm for solving the stochastic assembly line rebalancing problem”, Int. J. Prod. Econ., 102 (2006), 226–243 | DOI
[15] Gurevsky E. E., Battaïa O., Dolgui A. B., “Balancing of simple assembly lines under variations of task processing times”, Ann. Oper. Res., 201 (2012), 265–286 | DOI | MR | Zbl
[16] Gurevsky E. E., Battaïa O., Dolgui A. B., “Stability measure for a generalized assembly line balancing problem”, Discrete Appl. Math., 161 (2013), 377–394 | DOI | MR | Zbl
[17] Kuzmin K. G., Nikulin Yu. V., Mäkelä M., “On necessary and sufficient conditions for stability and quasistability in combinatorial multicriteria optimization”, Control Cybern., 46:4 (2017), 361–382 | MR | Zbl
[18] Lai T.-C., Sotskov Yu. N., Dolgui A. B., Zatsiupa A., “Stability radii of optimal assembly line balances with a fixed workstation set”, Int. J. Prod. Econ., 182 (2016), 356–371 | DOI
[19] Lai T.-C., Sotskov Yu. N., Dolgui A. B., “The stability radius of an optimal line balance with maximum efficiency for a simple assembly line”, Eur. J. Oper. Res., 274 (2019), 466–481 | DOI | MR | Zbl
[20] Otto A., Otto C., Scholl A., “Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing”, Eur. J. Oper. Res., 228 (2013), 33–45 | DOI | MR | Zbl
[21] Scholl A., Balancing and sequencing of assembly lines, Physica-Verl., Heidelberg, 1999, 318 pp.
[22] Sotskov Yu. N., Dolgui A. B., Portmann M.-C., “Stability analysis of optimal balance for assembly line with fixed cycle time”, Eur. J. Oper. Res., 168:3 (2006), 783–797 | DOI | MR | Zbl
[23] Sotskov Yu. N., Dolgui A. B., Lai T.-C., Zatsiupa A., “Enumerations and stability analysis of feasible and optimal line balances for simple assembly lines”, Comput. Ind. Eng., 90 (2015), 241–258 | DOI
[24] Sotskov Yu. N., Dolgui A. B., Sotskova N. Yu., Werner F., “Stability of optimal line balance with given station set”, Supply chain optimization, Appl. Optim. Book Ser., 94, Springer, New York, 2005, 135–149 | DOI | Zbl