A polynomial $3/5$-approximate algorithm for~the~asymmetric maximization version of $3$-PSP
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 30-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a first polynomial algorithm with guaranteed approximation ratio for the asymmetric maximization version of the asymmetric $3$-Peripatetic Salesman Problem ($3$-APSP). This problem consists in finding the three edge-disjoint Hamiltonian circuits of maximal total weight in a complete weighted digraph. We prove that the algorithm has guaranteed approximation ratio $3/5$ and cubic running-time. Illustr. 18, bibliogr. 27.
Keywords: Hamiltonian cycle, traveling salesman problem, $m$-peripatetic salesman problem, approximation algorithm, guaranteed approximation ratio.
@article{DA_2019_26_2_a1,
     author = {A. N. Glebov and S. G. Toktokhoeva},
     title = {A polynomial $3/5$-approximate algorithm for~the~asymmetric maximization version of $3${-PSP}},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {30--59},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2019_26_2_a1/}
}
TY  - JOUR
AU  - A. N. Glebov
AU  - S. G. Toktokhoeva
TI  - A polynomial $3/5$-approximate algorithm for~the~asymmetric maximization version of $3$-PSP
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 30
EP  - 59
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2019_26_2_a1/
LA  - ru
ID  - DA_2019_26_2_a1
ER  - 
%0 Journal Article
%A A. N. Glebov
%A S. G. Toktokhoeva
%T A polynomial $3/5$-approximate algorithm for~the~asymmetric maximization version of $3$-PSP
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 30-59
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2019_26_2_a1/
%G ru
%F DA_2019_26_2_a1
A. N. Glebov; S. G. Toktokhoeva. A polynomial $3/5$-approximate algorithm for~the~asymmetric maximization version of $3$-PSP. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 30-59. http://geodesic.mathdoc.fr/item/DA_2019_26_2_a1/