Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_2_a0, author = {V. L. Beresnev and A. A. Melnikov}, title = {A cut generation algorithm of finding an~optimal~solution in a market competition}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--29}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2019_26_2_a0/} }
TY - JOUR AU - V. L. Beresnev AU - A. A. Melnikov TI - A cut generation algorithm of finding an~optimal~solution in a market competition JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 5 EP - 29 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_2_a0/ LA - ru ID - DA_2019_26_2_a0 ER -
V. L. Beresnev; A. A. Melnikov. A cut generation algorithm of finding an~optimal~solution in a market competition. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 5-29. http://geodesic.mathdoc.fr/item/DA_2019_26_2_a0/
[1] V. L. Beresnev, “On the competitive facility location problem with a free choice of suppliers”, Autom. Remote Control, 75:4 (2014), 668–676 | DOI | MR | Zbl
[2] V. L. Beresnev, A. A. Melnikov, “The branch-and-bound algorithm for a competitive facility location problem with the prescribed choice of suppliers”, J. Appl. Ind. Math., 8:2 (2014), 177–189 | DOI | MR | MR | Zbl
[3] V. L. Beresnev, A. A. Melnikov, “Cut generation algorithm for the discrete competitive facility location problem”, Dokl. Math., 97:3 (2018), 254–257 | DOI | DOI | MR | Zbl
[4] V. L. Beresnev, V. I. Suslov, “A mathematical model of market competition”, J. Appl. Ind. Math., 4:2 (2010), 147–157 | DOI | MR | MR | Zbl
[5] Benchmark Library “Discrete Location Problems” (accessed Feb. 11, 2019)
[6] A. A. Melnikov, “Randomized local search for the discrete competitive facility location problem”, Autom. Remote Control, 75:4 (2014), 700–714 | DOI | MR | Zbl
[7] Beresnev V. L., “Branch-and-bound algorithm for a competitive facility location problem”, Comput. Oper. Res., 40:8 (2013), 2062–2070 | DOI | MR | Zbl
[8] Beresnev V. L., Melnikov A. A., “Exact method for the capacitated competitive facility location problem”, Comput. Oper. Res., 95 (2018), 73–82 | DOI | MR | Zbl
[9] Beresnev V. L., Melnikov A. A., “Approximation of the competitive facility location problem with MIPs”, Comput. Oper. Res., 104 (2019), 139–148 | DOI | MR | Zbl
[10] Cánovas L., García S., Labbé M., Marín A., “A strengthened formulation for the simple plant location problem with order”, Oper. Res. Lett., 35:2 (2007), 141–150 | DOI | MR | Zbl
[11] Dempe S., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 332 pp. | MR | Zbl
[12] Gurobi optimizer reference manual. Gurobi Optimization, , 2018 (accessed Feb. 11, 2019) http://www.gurobi.com
[13] Hanjoul P., Peeters D., “A facility location problem with clients' preference orderings”, Reg. Sci. Urban Econ., 17:3 (1987), 451–473 | DOI
[14] Hemmati M., Smith J. C., “A mixed-integer bilevel programming approach for a competitive prioritized set covering problem”, Discrete Optim., 20 (2016), 105–134 | DOI | MR | Zbl
[15] Moore J. T., Bard J. F., “The mixed integer linear bilevel programming problem”, Oper. Res., 38:5 (1990), 911–921 | DOI | MR | Zbl
[16] Von Stackelberg H., The theory of the market economy, Oxford Univ. Press, Oxford, 1952, 289 pp.
[17] Vasilyev I., Klimentova X., Boccia M., “Polyhedral study of simple plant location problem with order”, Oper. Res. Lett., 41:2 (2013), 153–158 | DOI | MR | Zbl