Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2018_25_4_a6, author = {A. A. Sapozhenko and V. G. Sargsyan}, title = {The number of $k$-sumsets in an {Abelian} group}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {97--111}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2018_25_4_a6/} }
A. A. Sapozhenko; V. G. Sargsyan. The number of $k$-sumsets in an Abelian group. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 97-111. http://geodesic.mathdoc.fr/item/DA_2018_25_4_a6/
[1] V. G. Sargsyan, “The number of differences in groups of prime order”, Discrete Math. Appl., 23:2 (2013), 195–201 | DOI | DOI | MR | Zbl
[2] V. G. Sargsyan, “Counting sumsets and differences in abelian group”, Diskretn. Anal. Issled. Oper., 22:2 (2015), 73–85 (Russian) | DOI | MR | Zbl
[3] Alon N., “Large sets in finite fields are sumsets”, J. Number Theory, 126 (2007), 110–118 | DOI | MR | Zbl
[4] Alon N., Granville A., Ubis A., “The number of sumsets in a finite field”, Bull. Lond. Math. Soc., 42:5 (2010), 784–794 | DOI | MR | Zbl
[5] Croot E., Lev V. F., “Open problems in additive combinatorics”, Additive Combinatorics, CRM Proc. Lect. Notes, 43, Amer. Math. Soc., Providence, RI, 2007, 207–233 | DOI | MR | Zbl
[6] Green B., Essay submitted for the Smith's Prize, Camb. Univ., Cambridge, 2001
[7] Green B., Ruzsa I. Z., “Counting sumsets and sum-free sets modulo a prime”, Stud. Sci. Math. Hung., 41:3 (2004), 285–293 | MR | Zbl
[8] Green B., Ruzsa I. Z., “Sum-free sets in abelian groups”, Isr. J. Math., 147 (2005), 157–188 | DOI | MR | Zbl