Extensions of the positive closure operator by using logical connectives
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 46-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The positive closure operator is defined on using the logical formulas containing the logical connectives $\vee,\$ and the quantifier $\exists$. Extensions of the positive closure operator are considered by using arbitrary (and not necessarily binary) logical connectives. It is proved that each proper extension of the positive closure operator by using local connectives gives either an operator with a full system of logical connectives or an implication closure operator (extension by using logical implication). For the implication closure operator, the description of all closed classes is found in terms of endomorphism semigroups. Bibliogr. 11.
Keywords: positive closure operator, parametric closure operator.
@article{DA_2018_25_4_a3,
     author = {S. S. Marchenkov},
     title = {Extensions of the positive closure operator by using logical connectives},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {46--58},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_4_a3/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Extensions of the positive closure operator by using logical connectives
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 46
EP  - 58
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_4_a3/
LA  - ru
ID  - DA_2018_25_4_a3
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Extensions of the positive closure operator by using logical connectives
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 46-58
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_4_a3/
%G ru
%F DA_2018_25_4_a3
S. S. Marchenkov. Extensions of the positive closure operator by using logical connectives. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 46-58. http://geodesic.mathdoc.fr/item/DA_2018_25_4_a3/

[1] A. F. Danil'chenko, “On parametric expressibility of three-valued logic functions”, Algebra Logika, 16:4 (1977), 397–416 (Russian) | MR | Zbl

[2] A. V. Kuznetsov, “On the tools for detection of nondeducibility and nonexpressibility”, Logical Inference, Nauka, Moscow, 1979, 5–33 (Russian)

[3] S. S. Marchenkov, “On expressibility of functions of many-valued logic in some logical-functional languages”, Discrete Math. Appl., 9:6 (1999), 563–581 | DOI | DOI | MR | Zbl

[4] S. S. Marchenkov, “Definition of positively closed classes by endomorphism semigroups”, Discrete Math. Appl., 22:5–6 (2012), 511–520 | DOI | MR | Zbl

[5] S. S. Marchenkov, “On the extensions of parametric closure operator by means of logical connectives”, Izv. Vyssh. Uchebn. Zaved. Povolzh. Reg. Fiz.-Mat. Nauki, 2017, no. 1, 22–31 (Russian)

[6] Barris S., “Primitive positive clones which are endomorphism clones”, Algebra Univers., 24 (1987), 41–49 | DOI | MR

[7] Barris S., Willard R., “Finitely many primitive positive clones”, Proc. Amer. Math. Soc., 101:3 (1987), 427–430 | DOI | MR

[8] Danil'chenko A. F., “On parametrical expressibility of the functions of $k$-valued logic”, Colloq. Math. Soc. J. Bolyai, 28 (1981), 147–159 | MR | Zbl

[9] Hermann M., “On Boolean primitive positive clones”, Discrete Math., 308 (2008), 3151–3162 | DOI | MR | Zbl

[10] Snow J. W., “Generating primitive positive clones”, Algebra Univers., 44 (2000), 169–185 | DOI | MR | Zbl

[11] Szabó L., “On the lattice of clones acting bicentrally”, Acta Cybern., 1984, no. 6, 381–388 | MR