A bilevel stochastic programming problem with random parameters in the Follower's objective function
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 27-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is a bilevel stochastic linear programming problem with quantile criterion. Bilevel programming problems can be considered as formalization of the process of interaction between two parties. The first party is a Leader making a decision first; the second is a Follower making a decision knowing the Leader's strategy and the realization of the random parameters. It is assumed that the Follower's problem is linear if the realization of the random parameters and the Leader's strategy are given. The aim of the Leader is the minimization of the quantile function of a loss function that depends on his own strategy and the optimal Follower's strategy. It is shown that the Follower's problem has a unique solution with probability 1 if the distribution of the random parameters is absolutely continuous. The lower-semicontinuity of the loss function is proved and some conditions are obtained of the solvability of the problem under consideration. Some example shows that the continuity of the quantile function cannot be provided. The sample average approximation of the problem is formulated. The conditions are given to provide that, as the sample size increases, the sample average approximation converges to the original problem with respect to the strategy and the objective value. It is shown that the convergence conditions hold for almost all values of the reliability level. A model example is given of determining the tax rate, and the numerical experiments are executed for this example. Tab. 1, illustr. 2, bibliogr. 13.
Keywords: stochastic programming, bilevel problem, value-at-risk, sample average approximation.
Mots-clés : quantile criterion
@article{DA_2018_25_4_a2,
     author = {S. V. Ivanov},
     title = {A bilevel stochastic programming problem with random parameters in the {Follower's} objective function},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {27--45},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_4_a2/}
}
TY  - JOUR
AU  - S. V. Ivanov
TI  - A bilevel stochastic programming problem with random parameters in the Follower's objective function
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 27
EP  - 45
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_4_a2/
LA  - ru
ID  - DA_2018_25_4_a2
ER  - 
%0 Journal Article
%A S. V. Ivanov
%T A bilevel stochastic programming problem with random parameters in the Follower's objective function
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 27-45
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_4_a2/
%G ru
%F DA_2018_25_4_a2
S. V. Ivanov. A bilevel stochastic programming problem with random parameters in the Follower's objective function. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 27-45. http://geodesic.mathdoc.fr/item/DA_2018_25_4_a2/

[1] S. V. Ivanov, A. I. Kibzun, “On the convergence of sample approximations for stochastic programming problems with probabilistic criteria”, Autom. Remote Control, 79:2 (2018), 216–228 | DOI | MR | Zbl

[2] S. V. Ivanov, M. V. Morozova, “Stochastic problem of competitive location of facilities with quantile criterion”, Autom. Remote Control, 77:3 (2016), 451–461 | DOI | MR | Zbl

[3] A. I. Kibzun, Yu. S. Kan, Stochastic Programming Problems with Probabilistic Criteria, Fizmatlit, Moscow, 2009 (Russian)

[4] A. N. Shiryaev, Probability-1, Grad. Texts Math., 95, Springer, New York, 2016 | DOI | MR | Zbl

[5] J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Acad. Publ., Dordrecht, 1998 | MR | Zbl

[6] A. Chen, J. Kim, Z. Zhou, P. Chootinan, “Alpha reliable network design problem”, Transp. Res. Rec., 2029 (2007), 49–57 | DOI

[7] S. Dempe, Foundations of Bilevel Programming, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[8] S. Dempe, S. V. Ivanov, A. Naumov, “Reduction of the bilevel stochastic optimization problem with quantile objective function to a mixed-integer problem”, Appl. Stoch. Models Bus. Ind., 33:5 (2017), 544–554 | DOI | MR

[9] S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés, N. Kalashnykova, Bilevel Programming Problems: Theory, Algorithms and Applications to Energy Network, Springer, Heidelberg, 2015 | MR

[10] H. Katagiri, T. Uno, K. Kato, H. Tsuda, H. Tsubaki, “Random fuzzy bilevel linear programming through possibility-based value at risk model”, Int. J. Mach. Learn. Cybern., 5:2 (2014), 211–224 | DOI

[11] A. Melnikov, V. Beresnev, “Upper bound for the competitive facility location problem with quantile criterion”, Discrete Optimization and Operations Research, Proc. 9th Int. Conf. DOOR (Vladivostok, Russia, Sept. 19–23, 2016), Lect. Notes Comput. Sci., 9869, Springer, Cham, 2016, 373–387 | DOI | MR | Zbl

[12] B. K. Pagnoncelli, S. Ahmed, A. Shapiro, “Sample average approximation method for chance constrained programming: Theory and applications”, J. Optim. Theory Appl., 142 (2009), 399–416 | DOI | MR | Zbl

[13] R. T. Rockafellar, R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss., 317, Springer, Heidelberg, 2009 | MR