Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2018_25_4_a2, author = {S. V. Ivanov}, title = {A bilevel stochastic programming problem with random parameters in the {Follower's} objective function}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {27--45}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2018_25_4_a2/} }
TY - JOUR AU - S. V. Ivanov TI - A bilevel stochastic programming problem with random parameters in the Follower's objective function JO - Diskretnyj analiz i issledovanie operacij PY - 2018 SP - 27 EP - 45 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2018_25_4_a2/ LA - ru ID - DA_2018_25_4_a2 ER -
S. V. Ivanov. A bilevel stochastic programming problem with random parameters in the Follower's objective function. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 27-45. http://geodesic.mathdoc.fr/item/DA_2018_25_4_a2/
[1] S. V. Ivanov, A. I. Kibzun, “On the convergence of sample approximations for stochastic programming problems with probabilistic criteria”, Autom. Remote Control, 79:2 (2018), 216–228 | DOI | MR | Zbl
[2] S. V. Ivanov, M. V. Morozova, “Stochastic problem of competitive location of facilities with quantile criterion”, Autom. Remote Control, 77:3 (2016), 451–461 | DOI | MR | Zbl
[3] A. I. Kibzun, Yu. S. Kan, Stochastic Programming Problems with Probabilistic Criteria, Fizmatlit, Moscow, 2009 (Russian)
[4] A. N. Shiryaev, Probability-1, Grad. Texts Math., 95, Springer, New York, 2016 | DOI | MR | Zbl
[5] J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications, Kluwer Acad. Publ., Dordrecht, 1998 | MR | Zbl
[6] A. Chen, J. Kim, Z. Zhou, P. Chootinan, “Alpha reliable network design problem”, Transp. Res. Rec., 2029 (2007), 49–57 | DOI
[7] S. Dempe, Foundations of Bilevel Programming, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl
[8] S. Dempe, S. V. Ivanov, A. Naumov, “Reduction of the bilevel stochastic optimization problem with quantile objective function to a mixed-integer problem”, Appl. Stoch. Models Bus. Ind., 33:5 (2017), 544–554 | DOI | MR
[9] S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés, N. Kalashnykova, Bilevel Programming Problems: Theory, Algorithms and Applications to Energy Network, Springer, Heidelberg, 2015 | MR
[10] H. Katagiri, T. Uno, K. Kato, H. Tsuda, H. Tsubaki, “Random fuzzy bilevel linear programming through possibility-based value at risk model”, Int. J. Mach. Learn. Cybern., 5:2 (2014), 211–224 | DOI
[11] A. Melnikov, V. Beresnev, “Upper bound for the competitive facility location problem with quantile criterion”, Discrete Optimization and Operations Research, Proc. 9th Int. Conf. DOOR (Vladivostok, Russia, Sept. 19–23, 2016), Lect. Notes Comput. Sci., 9869, Springer, Cham, 2016, 373–387 | DOI | MR | Zbl
[12] B. K. Pagnoncelli, S. Ahmed, A. Shapiro, “Sample average approximation method for chance constrained programming: Theory and applications”, J. Optim. Theory Appl., 142 (2009), 399–416 | DOI | MR | Zbl
[13] R. T. Rockafellar, R. J.-B. Wets, Variational Analysis, Grundlehren Math. Wiss., 317, Springer, Heidelberg, 2009 | MR