Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2018_25_4_a1, author = {Yu. A. Zuev}, title = {Maximal $k$-intersecting families of subsets and {Boolean} functions}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {15--26}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2018_25_4_a1/} }
Yu. A. Zuev. Maximal $k$-intersecting families of subsets and Boolean functions. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 15-26. http://geodesic.mathdoc.fr/item/DA_2018_25_4_a1/
[1] Yu. A. Zuev, Modern Discrete Mathematics: From Enumerative Combinatorics to Cryptography of the XXI Century, Librokom, Moscow, 2018 (Russian)
[2] A. D. Korshunov, “The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions). I. The case of even $n$ and $k=2$”, Diskretn. Anal. Issled. Oper. Ser. 1, 10:4 (2003), 31–69 (Russian) | MR | Zbl
[3] A. D. Korshunov, “The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$ variables). II. The case of odd $n$ and $k=2$”, Diskretn. Anal. Issled. Oper. Ser. 1, 12:1 (2005), 12–70 (Russian) | MR | Zbl
[4] A. D. Korshunov, “The number of $k$-nonseparated families of subsets of an $n$-element set ($k$-nonseparated Boolean functions of $n$-variables). III. The case of $k\geq3$ and arbitrary $n$”, Diskretn. Anal. Issled. Oper. Ser. 1, 12:3 (2005), 60–73 (Russian) | MR | Zbl
[5] R. G. Nigmatullin, The Complexity of Boolean Functions, Nauka, Moscow, 1991 (Russian)
[6] A. A. Sapozhenko, “On the number of antichains in multilevelled ranked posets”, Discrete Math. Appl., 1:2 (1991), 149–169 | DOI | MR | Zbl
[7] Erdös P., Kleitman D. J., “Extremal problems among subsets of a set”, Discrete Math., 8 (1974), 281–294 | DOI | MR | Zbl
[8] Erdös P., Ko C., Rado R., “Intersection theorems for systems of finite sets”, Q. J. Math., 12 (1961), 313–320 | DOI | MR | Zbl
[9] Kleitman D. J., “On Dedekind's problem: The number of monotone Boolean functions”, Proc. Amer. Math. Soc., 21:3 (1969), 677–682 | MR | Zbl