On $2$-connected transmission irregular graphs
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The transmission of a vertex $v$ in a graph is the sum of the distances from $v$ to all other vertices of the graph. In a transmission irregular graph, the transmissions of all vertices are pairwise distinct. It is known that almost all graphs are not transmission irregular. Some infinite family of transmission irregular trees was constructed by Alizadeh and Klavžar [Appl. Math. Comput., 328, 113–118, 2018] and the following problem was formulated: Is there an infinite family of $2$-connected graphs with the property? In this article, we construct an infinite family of $2$-connected transmission irregular graphs. Tab. 2, illustr. 2, bibliogr. 21.
Keywords: graph, transmission irregular graph, Wiener index.
Mots-clés : vertex transmission
@article{DA_2018_25_4_a0,
     author = {A. A. Dobrynin},
     title = {On $2$-connected transmission irregular graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_4_a0/}
}
TY  - JOUR
AU  - A. A. Dobrynin
TI  - On $2$-connected transmission irregular graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 5
EP  - 14
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_4_a0/
LA  - ru
ID  - DA_2018_25_4_a0
ER  - 
%0 Journal Article
%A A. A. Dobrynin
%T On $2$-connected transmission irregular graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 5-14
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_4_a0/
%G ru
%F DA_2018_25_4_a0
A. A. Dobrynin. On $2$-connected transmission irregular graphs. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 5-14. http://geodesic.mathdoc.fr/item/DA_2018_25_4_a0/

[1] Abiad A., Brimkov B., Erey B., Leshock L., Martinez-Rivera X., Song S. O. S.-Y., Williford J., “On the Wiener index, distance cospectrality and transmission-regular graphs”, Discrete Appl. Math., 230 (2017), 1–10 | DOI | MR | Zbl

[2] Alizadeh Y., Andova V., Klavžar S., Škrekovski R., “Wiener dimension: fundamental properties and (5,0)-nanotubical fullerenes”, MATCH Commun. Math. Comput. Chem., 72 (2014), 279–294 | MR | Zbl

[3] Alizadeh Y., Klavžar S., “Complexity of topological indices: the case of connective eccentric index”, MATCH Commun. Math. Comput. Chem., 76 (2016), 659–667 | MR | Zbl

[4] Alizadeh Y., Klavžar S., “On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs”, Appl. Math. Comput., 328 (2018), 113–118 | MR

[5] Balakrishnan K., Brešar B., Changat M., Klavžar S., Kovše M., Subhamathi A. R., “Computing median and antimedian sets in median graphs”, Algorithmica, 57 (2010), 207–216 | DOI | MR | Zbl

[6] Bonchev D., “Shannon's information and complexity”, Complexity in chemistry: introduction and fundamentals, Math. Chem. Ser., 7, eds. D. Bonchev, D. H. Rouvray, Taylor Francis, London, 2003, 155–187 | MR

[7] Dehmer M., Emmert-Streib F. (eds.), Quantitative graph theory: mathematical foundations and applications, Discrete Math. Its Appl., Chapman and Hall/CRC, Boca Raton, FL, 2014 | DOI | MR

[8] Dobrynin A. A., Entringer R., Gutman I., “Wiener index of trees: theory and applications”, Acta Appl. Math., 66:3 (2001), 211–249 | DOI | MR | Zbl

[9] Dobrynin A. A., Gutman I., Klavžar S., Žigert P., “Wiener index of hexagonal systems”, Acta Appl. Math., 72:3 (2002), 247–294 | DOI | MR | Zbl

[10] Dobrynin A. A., Mel'nikov L. S., “Wiener index of line graphs”, Distance in molecular graphs – theory, Math. Chem. Monogr., 12, eds. I. Gutman, B. Furtula, Univ. Kragujevac, Kragujevac, Serbia, 2012, 85–121

[11] Entringer R. C., “Distance in graphs: trees”, J. Comb. Math. Comb. Comput., 24 (1997), 65–84 | MR | Zbl

[12] Entringer R. C., Jackson D. E., Snyder D. A., “Distance in graphs”, Czech. Math. J., 26 (1976), 283–296 | MR | Zbl

[13] Gutman I., Furtula B. (eds.), Distance in molecular graphs – theory, Math. Chem. Monogr., 12, Univ. Kragujevac, Kragujevac, Serbia, 2012

[14] Gutman I., Furtula B. (eds.), Distance in molecular graphs – applications, Math. Chem. Monogr., 13, Univ. Kragujevac, Kragujevac, Serbia, 2012

[15] Gutman I., Polansky O. E., Mathematical concepts in organic chemistry, Springer-Verl., Berlin, 1986 | MR | Zbl

[16] Knor M., Škrekovski R., “Wiener index of line graphs”, Quantitative graph theory: mathematical foundations and applications, Discrete Math. Its Appl., eds. M. Dehmer, F. Emmert-Streib, Chapman and Hall/CRC, Boca Raton, FL, 2014, 279–301 | DOI | MR

[17] Knor M., Škrekovski R., Tepeh A., “Mathematical aspects of Wiener index”, Ars Math. Contemp., 11:2 (2016), 327–352 | DOI | MR | Zbl

[18] Krnc M., Škrekovski R., “Centralization of transmission in networks”, Discrete Math., 338 (2015), 2412–2420 | DOI | MR | Zbl

[19] Plesnik J., “On the sum of all distances in a graph or digraph”, J. Graph Theory, 8 (1984), 1–21 | DOI | MR | Zbl

[20] Smart C., Slater P. J., “Center, median, and centroid subgraphs”, Networks, 34 (1999), 303–311 | MR | Zbl

[21] Trinajstić N., Chemical graph theory, CRC Press, Boca Raton, FL, 1983 | MR