Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2018_25_4_a0, author = {A. A. Dobrynin}, title = {On $2$-connected transmission irregular graphs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--14}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2018_25_4_a0/} }
A. A. Dobrynin. On $2$-connected transmission irregular graphs. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 5-14. http://geodesic.mathdoc.fr/item/DA_2018_25_4_a0/
[1] Abiad A., Brimkov B., Erey B., Leshock L., Martinez-Rivera X., Song S. O. S.-Y., Williford J., “On the Wiener index, distance cospectrality and transmission-regular graphs”, Discrete Appl. Math., 230 (2017), 1–10 | DOI | MR | Zbl
[2] Alizadeh Y., Andova V., Klavžar S., Škrekovski R., “Wiener dimension: fundamental properties and (5,0)-nanotubical fullerenes”, MATCH Commun. Math. Comput. Chem., 72 (2014), 279–294 | MR | Zbl
[3] Alizadeh Y., Klavžar S., “Complexity of topological indices: the case of connective eccentric index”, MATCH Commun. Math. Comput. Chem., 76 (2016), 659–667 | MR | Zbl
[4] Alizadeh Y., Klavžar S., “On graphs whose Wiener complexity equals their order and on Wiener index of asymmetric graphs”, Appl. Math. Comput., 328 (2018), 113–118 | MR
[5] Balakrishnan K., Brešar B., Changat M., Klavžar S., Kovše M., Subhamathi A. R., “Computing median and antimedian sets in median graphs”, Algorithmica, 57 (2010), 207–216 | DOI | MR | Zbl
[6] Bonchev D., “Shannon's information and complexity”, Complexity in chemistry: introduction and fundamentals, Math. Chem. Ser., 7, eds. D. Bonchev, D. H. Rouvray, Taylor Francis, London, 2003, 155–187 | MR
[7] Dehmer M., Emmert-Streib F. (eds.), Quantitative graph theory: mathematical foundations and applications, Discrete Math. Its Appl., Chapman and Hall/CRC, Boca Raton, FL, 2014 | DOI | MR
[8] Dobrynin A. A., Entringer R., Gutman I., “Wiener index of trees: theory and applications”, Acta Appl. Math., 66:3 (2001), 211–249 | DOI | MR | Zbl
[9] Dobrynin A. A., Gutman I., Klavžar S., Žigert P., “Wiener index of hexagonal systems”, Acta Appl. Math., 72:3 (2002), 247–294 | DOI | MR | Zbl
[10] Dobrynin A. A., Mel'nikov L. S., “Wiener index of line graphs”, Distance in molecular graphs – theory, Math. Chem. Monogr., 12, eds. I. Gutman, B. Furtula, Univ. Kragujevac, Kragujevac, Serbia, 2012, 85–121
[11] Entringer R. C., “Distance in graphs: trees”, J. Comb. Math. Comb. Comput., 24 (1997), 65–84 | MR | Zbl
[12] Entringer R. C., Jackson D. E., Snyder D. A., “Distance in graphs”, Czech. Math. J., 26 (1976), 283–296 | MR | Zbl
[13] Gutman I., Furtula B. (eds.), Distance in molecular graphs – theory, Math. Chem. Monogr., 12, Univ. Kragujevac, Kragujevac, Serbia, 2012
[14] Gutman I., Furtula B. (eds.), Distance in molecular graphs – applications, Math. Chem. Monogr., 13, Univ. Kragujevac, Kragujevac, Serbia, 2012
[15] Gutman I., Polansky O. E., Mathematical concepts in organic chemistry, Springer-Verl., Berlin, 1986 | MR | Zbl
[16] Knor M., Škrekovski R., “Wiener index of line graphs”, Quantitative graph theory: mathematical foundations and applications, Discrete Math. Its Appl., eds. M. Dehmer, F. Emmert-Streib, Chapman and Hall/CRC, Boca Raton, FL, 2014, 279–301 | DOI | MR
[17] Knor M., Škrekovski R., Tepeh A., “Mathematical aspects of Wiener index”, Ars Math. Contemp., 11:2 (2016), 327–352 | DOI | MR | Zbl
[18] Krnc M., Škrekovski R., “Centralization of transmission in networks”, Discrete Math., 338 (2015), 2412–2420 | DOI | MR | Zbl
[19] Plesnik J., “On the sum of all distances in a graph or digraph”, J. Graph Theory, 8 (1984), 1–21 | DOI | MR | Zbl
[20] Smart C., Slater P. J., “Center, median, and centroid subgraphs”, Networks, 34 (1999), 303–311 | MR | Zbl
[21] Trinajstić N., Chemical graph theory, CRC Press, Boca Raton, FL, 1983 | MR