Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2018_25_3_a2, author = {K. L. Rychkov}, title = {Complexity of the realization of a~linear {Boolean} function in the class of $\pi$-schemes}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {36--94}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2018_25_3_a2/} }
TY - JOUR AU - K. L. Rychkov TI - Complexity of the realization of a~linear Boolean function in the class of $\pi$-schemes JO - Diskretnyj analiz i issledovanie operacij PY - 2018 SP - 36 EP - 94 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2018_25_3_a2/ LA - ru ID - DA_2018_25_3_a2 ER -
K. L. Rychkov. Complexity of the realization of a~linear Boolean function in the class of $\pi$-schemes. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 3, pp. 36-94. http://geodesic.mathdoc.fr/item/DA_2018_25_3_a2/
[1] S. V. Avgustinovich, Yu. L. Vasil'ev, K. L. Rychkov, “The computation complexity in the class of formulas”, J. Appl. Ind. Math., 6:4 (2012), 403–409 | DOI | MR | Zbl
[2] Yu. L. Vasil'ev, K. L. Rychkov, “A lower bound on formula size of a ternary linear function”, J. Appl. Ind. Math., 7:4 (2013), 490–499 | MR | Zbl
[3] K. L. Rychkov, “A modification of Khrapchenko's method and its application to estimation of complexity of $\pi$-schemes for code functions”, Methods of Discrete Analysis in Theory of Graphs and Schemes, 42, Izd. Inst. Mat., Novosibirsk, 1985, 91–98 (Russian) | Zbl
[4] K. L. Rychkov, “On the lower bounds for the complexity of serial-parallel contact circuits realizing linear Boolean functions”, Discrete Analysis and Operations Research, Math. Its Appl., 355, Kluwer Acad. Publ., Dordrecht, 1996, 217–234 | MR | Zbl
[5] K. L. Rychkov, “Lower bounds on the formula complexity of a linear Boolean function”, Sib. Elektron. Mat. Izv., 11 (2014), 165–184 (Russian) | Zbl
[6] K. L. Rychkov, “Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating”, Diskretn. Anal. Issled. Oper., 22:5 (2015), 71–85 (Russian) | DOI | MR | Zbl
[7] B. A. Subbotovskaya, “Realization of linear functions by formulas using $\vee,\,^-$”, Sov. Math. Dokl., 2 (1961), 110–112 | MR | Zbl
[8] V. M. Khrapchenko, “Complexity of the realization of a linear function in the class of $\Pi$-circuits”, Math. Notes Acad. Sci. USSR, 9:1 (1971), 21–23 | MR | Zbl | Zbl
[9] V. M. Khrapchenko, “A method of determining lower bounds for the complexity of $\Pi$-schemes”, Math. Notes Acad. Sci. USSR, 10:1 (1971), 474–479 | MR | Zbl
[10] D. Yu. Cherukhin, “To the question of a logical representation for the parity counter”, Neform. Nauka, 2009, no. 2, 14–23 (Russian)
[11] S. V. Yablonskii, “Realization of a linear function in the class of $\Pi$-circuits”, Dokl. Akad. Nauk SSSR Nov. Ser., 94:5 (1954), 805–806 (Russian) | MR
[12] Harary F., Graph theory, Addison-Wesley, Reading, MA, 1969, 273 pp. | MR | Zbl
[13] Håstad J., “The shrinkage exponent of de Morgan formulae is 2”, SIAM J. Comput., 27:1 (1998), 48–64 | DOI | MR
[14] Karchmer M., Wigderson A., “Monotone circuits for connectivity require super-logarithmics depth”, SIAM J. Discrete Math., 3:2 (1990), 255–265 | DOI | MR | Zbl
[15] Lee T., “A new rank technique for formula size lower bounds”, Proc. 24th Annu. Symp. Theoretical Aspects of Computer Science (Aachen, Germany, Feb. 22–24, 2007), Lect. Notes Comput. Sci., 4393, Springer-Verl., Heidelberg, 2007, 145–156 | DOI | MR | Zbl
[16] Razborov A., “Applications of matrix methods to the theory of lower bounds in computational complexity”, Combinatorica, 10:1 (1990), 81–93 | DOI | MR | Zbl
[17] Turán P., “Eine Extremalaufgabe aus der Graphentheorie”, Mat. Fiz. Lapok, 48:1 (1941), 436–452 | MR | Zbl
[18] Wegener I., The complexity of Boolean functions, Wiley, Chichester, UK, 1987 | MR | Zbl