Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2018_25_3_a1, author = {S. I. Veselov and D. V. Gribanov and N. Yu. Zolotykh and A. Yu. Chirkov}, title = {Minimizing a~symmetric quasiconvex function on a~two-dimensional lattice}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {23--35}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2018_25_3_a1/} }
TY - JOUR AU - S. I. Veselov AU - D. V. Gribanov AU - N. Yu. Zolotykh AU - A. Yu. Chirkov TI - Minimizing a~symmetric quasiconvex function on a~two-dimensional lattice JO - Diskretnyj analiz i issledovanie operacij PY - 2018 SP - 23 EP - 35 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2018_25_3_a1/ LA - ru ID - DA_2018_25_3_a1 ER -
%0 Journal Article %A S. I. Veselov %A D. V. Gribanov %A N. Yu. Zolotykh %A A. Yu. Chirkov %T Minimizing a~symmetric quasiconvex function on a~two-dimensional lattice %J Diskretnyj analiz i issledovanie operacij %D 2018 %P 23-35 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2018_25_3_a1/ %G ru %F DA_2018_25_3_a1
S. I. Veselov; D. V. Gribanov; N. Yu. Zolotykh; A. Yu. Chirkov. Minimizing a~symmetric quasiconvex function on a~two-dimensional lattice. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 3, pp. 23-35. http://geodesic.mathdoc.fr/item/DA_2018_25_3_a1/
[1] I. M. Vinogradov, Elements of Number Theory, Dover, Mineola, NY, 2016 | MR
[2] N. Yu. Zolotykh, A. Yu. Chirkov, “Lower bound for complexity of minimization of quasi-convex function on integer lattice”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo, 2012, no. 5, 93–96
[3] A. G. Sukharev, A. V. Timokhov, V. V. Fyodorov, A Course in Optimization Methods, Nauka, Moscow, 1986 | MR
[4] A. Yu. Chirkov, “Minimization of quasi-convex function on two-dimensional integer lattice”, Vestn. Nizhegorod. Univ. N. I. Lobachevskogo, Mat. Model. Optim. Upr., 2003, no. 1, 227–238
[5] Avriel M., Wilde D. J., “Optimality proof for the symmetric Fibonacci search technique”, Fibonacci Q., 4:3 (1966), 265–269 | MR | Zbl
[6] Basu A., Oertel T., “Centerpoints: A link between optimization and convex geometry”, SIAM J. Optim., 27:2 (2017), 866–889 | DOI | MR | Zbl
[7] Heinz S., “Complexity of integer quasiconvex polynomial optimization”, J. Complexity, 21:4 (2005), 543–556 | DOI | MR | Zbl
[8] Heinz S., “Quasiconvex functions can be approximated by quasiconvex polynomials”, ESAIM, Control Optim. Calc. Var., 14:4 (2008), 795–801 | DOI | MR | Zbl
[9] Hildebrand R., Koppe M., “A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity $2^{n\log n}$”, Discrete Optim., 10:1 (2013), 69–84 | DOI | MR | Zbl
[10] Kiefer J., “Sequential minimax search for a maximum”, Proc. Amer. Math. Soc., 4:3 (1953), 502–506 | DOI | MR | Zbl
[11] Oertel T., Integer convex minimization in low dimensions, Thes. $\dots$ doct. phylosophy, Eidgenössische Technische Hochschule, Zürich, 2014
[12] Oertel T., Wagner C., Weismantel R., “Integer convex minimization by mixed integer linear optimization”, Oper. Res. Lett., 42:6 (2014), 424–428 | DOI | MR | Zbl
[13] Schrijver A., Theory of linear and integer programming, John Wiley Sons, Chichester, 1998 | MR
[14] Sun W., Yuan Y., Optimization theory and methods: Nonlinear programming, v. 1, Springer Optim. Its Appl., 1, Springer, New York, 2006 | MR | Zbl