Minimizing a~symmetric quasiconvex function on a~two-dimensional lattice
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 3, pp. 23-35

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the minimization problem for a symmetric quasiconvex function defined by an oracle on the set of integer points of a square. We formulate an optimality criterion for the solution, obtain a logarithmic lower bound for the complexity of the problem, and propose an algorithm for which the number of inquiries to the oracle is at most thrice the lower bound. Bibliogr. 14.
Mots-clés : quasiconvex function, oracle
Keywords: integer lattice.
@article{DA_2018_25_3_a1,
     author = {S. I. Veselov and D. V. Gribanov and N. Yu. Zolotykh and A. Yu. Chirkov},
     title = {Minimizing a~symmetric quasiconvex function on a~two-dimensional lattice},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {23--35},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_3_a1/}
}
TY  - JOUR
AU  - S. I. Veselov
AU  - D. V. Gribanov
AU  - N. Yu. Zolotykh
AU  - A. Yu. Chirkov
TI  - Minimizing a~symmetric quasiconvex function on a~two-dimensional lattice
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 23
EP  - 35
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_3_a1/
LA  - ru
ID  - DA_2018_25_3_a1
ER  - 
%0 Journal Article
%A S. I. Veselov
%A D. V. Gribanov
%A N. Yu. Zolotykh
%A A. Yu. Chirkov
%T Minimizing a~symmetric quasiconvex function on a~two-dimensional lattice
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 23-35
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_3_a1/
%G ru
%F DA_2018_25_3_a1
S. I. Veselov; D. V. Gribanov; N. Yu. Zolotykh; A. Yu. Chirkov. Minimizing a~symmetric quasiconvex function on a~two-dimensional lattice. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 3, pp. 23-35. http://geodesic.mathdoc.fr/item/DA_2018_25_3_a1/