Word-representable graphs: a~survey
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 19-53
Voir la notice de l'article provenant de la source Math-Net.Ru
Letters $x$ and $y$ alternate in a word $w$ if after deleting all letters but $x$ and $y$ in $w$ we get either a word $xyxy\dots$ or a word $yxyx\dots$ (each of these words can be of odd or even length). A graph $G=(V,E)$ is word-representable if there is a finite word $w$ over an alphabet $V$ such that the letters $x$ and $y$ alternate in $w$ if and only if $xy\in E$. The word-representable graphs include many important graph classes, in particular, circle graphs, $3$-colorable graphs and comparability graphs. In this paper we present the full survey of the available results on the theory of word-representable graphs and the most recent achievements in this field. Tab. 2, illustr. 11, bibliogr. 48.
Keywords:
representation of graphs, word, pattern.
Mots-clés : orientation
Mots-clés : orientation
@article{DA_2018_25_2_a1,
author = {s. V. Kitaev and A. V. Pyatkin},
title = {Word-representable graphs: a~survey},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {19--53},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a1/}
}
s. V. Kitaev; A. V. Pyatkin. Word-representable graphs: a~survey. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 19-53. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a1/