Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2018_25_2_a0, author = {V. E. Alekseev and S. V. Sorochan}, title = {New cases of the polynomial solvability of the independent set problem for graphs with forbidden paths}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--18}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a0/} }
TY - JOUR AU - V. E. Alekseev AU - S. V. Sorochan TI - New cases of the polynomial solvability of the independent set problem for graphs with forbidden paths JO - Diskretnyj analiz i issledovanie operacij PY - 2018 SP - 5 EP - 18 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2018_25_2_a0/ LA - ru ID - DA_2018_25_2_a0 ER -
%0 Journal Article %A V. E. Alekseev %A S. V. Sorochan %T New cases of the polynomial solvability of the independent set problem for graphs with forbidden paths %J Diskretnyj analiz i issledovanie operacij %D 2018 %P 5-18 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2018_25_2_a0/ %G ru %F DA_2018_25_2_a0
V. E. Alekseev; S. V. Sorochan. New cases of the polynomial solvability of the independent set problem for graphs with forbidden paths. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 5-18. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a0/
[1] V. E. Alekseev, “On the local restriction effect on the complexity of finding the graph independence number”, Combinatorial and algebraic methods in applied mathematics, Izd. Gorkovskogo Univ., Gorky, 1982, 3–13
[2] V. E. Alekseev, “On the number of maximal independent sets in graphs from hereditary classes”, Combinatorial and algebraic methods in discrete optimization, Izd. NNGU, Nizhny Novgorod, 1991, 5–8
[3] V. E. Alekseev, “A polynomial algorithm for finding the largest independent sets in claw-free graphs”, Discrete Appl. Math., 135:1–3 (2004), 3–16 | MR | MR | Zbl
[4] V. E. Alekseev, D. V. Korobitsyn, “Complexity of some problems for hereditary classes of graphs”, Diskretn. Mat., 4:4 (1992), 34–40 | MR | Zbl
[5] D. S. Malyshev, D. V. Sirotkin, “Polynomial-time solvability of the independent set problem in a certain class of subcubic planar graphs”, J. Appl. Ind. Math., 11:3 (2017), 400–414 | DOI | DOI | MR | Zbl
[6] Grzesik A., Klimošová T., Pilipczuk Mar., Pilipczuk Mic., Polynomial-time algorithm for maximum weight independent set on $P_6$-free graphs, 2017, arXiv: 1707.05491
[7] Hsu W., Ikura Y., Nemhauser G. L., “A polynomial algorithm for maximum weighted vertex packing in graphs without long odd cycles”, Math. Program., 20 (1981), 225–232 | DOI | MR | Zbl
[8] Karthick T., Maffray F., “Weighted independent sets in classes of $P_6$-free graphs”, Discrete Appl. Math., 209 (2016), 217–226 | DOI | MR | Zbl
[9] Lokshtanov D., Vatshelle M., Villanger Y., “Independent set in $P_5$-free graphs in polynomial time”, Proc. 25th Annu. ACM-SIAM Symp. Discrete Algorithms, SODA 2014 (Portland, Oregon, USA, Jan. 5–7, 2014), SIAM, Philadelphia, PA, 2014, 570–581 | MR
[10] Lozin V. V., Monnot J., Ries B., “On the maximum independent set problem in subclasses of subcubic graphs”, J. Discrete Algorithms, 31 (2015), 104–112 | DOI | MR | Zbl
[11] Lozin V. V., Mosca R., “Independent sets in extension of $2K_2$-free graphs”, Discrete Appl. Math., 146 (2005), 74–80 | DOI | MR | Zbl
[12] Lozin V. V., Rautenbach D., “Some results on graphs without long induced paths”, Inf. Process. Lett., 88 (2003), 167–171 | DOI | MR | Zbl