On the skeleton of the polytope of pyramidal tours
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 1, pp. 5-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the skeleton of the polytope of pyramidal tours. A Hamiltonian tour is called pyramidal if the salesperson starts in city $1$, then visits some cities in increasing order of their numbers, reaches city $n$, and returns to city $1$ visiting the remaining cities in decreasing order. The polytope $\mathrm{PYR}(n)$ is defined as the convex hull of the characteristic vectors of all pyramidal tours in the complete graph $K_n$. The skeleton of $\mathrm{PYR}(n)$ is the graph whose vertex set is the vertex set of $\mathrm{PYR}(n)$ and the edge set is the set of geometric edges or one-dimensional faces of $\mathrm{PYR}(n)$. We describe the necessary and sufficient condition for the adjacency of vertices of the polytope $\mathrm{PYR}(n)$. On this basis we developed an algorithm to check the vertex adjacency with linear complexity. We establish that the diameter of the skeleton of $\mathrm{PYR}(n)$ equals $2$, and the asymptotically exact estimate of the clique number of the skeleton of $\mathrm{PYR}(n)$ is $\Theta(n^2)$. It is known that this value characterizes the time complexity in a broad class of algorithms based on linear comparisons. Illustr. 4, bibliogr. 23.
Mots-clés : pyramidal tour
Keywords: $1$-skeleton, necessary and sufficient condition of adjacency, clique number, graph diameter.
@article{DA_2018_25_1_a0,
     author = {V. A. Bondarenko and A. V. Nikolaev},
     title = {On the skeleton of the polytope of pyramidal tours},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--24},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_1_a0/}
}
TY  - JOUR
AU  - V. A. Bondarenko
AU  - A. V. Nikolaev
TI  - On the skeleton of the polytope of pyramidal tours
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 5
EP  - 24
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_1_a0/
LA  - ru
ID  - DA_2018_25_1_a0
ER  - 
%0 Journal Article
%A V. A. Bondarenko
%A A. V. Nikolaev
%T On the skeleton of the polytope of pyramidal tours
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 5-24
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_1_a0/
%G ru
%F DA_2018_25_1_a0
V. A. Bondarenko; A. V. Nikolaev. On the skeleton of the polytope of pyramidal tours. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 1, pp. 5-24. http://geodesic.mathdoc.fr/item/DA_2018_25_1_a0/