An exact algorithm for finding a~vector subset with the longest sum
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 111-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem: Given a set of $n$ vectors in the $d$-dimensional Euclidean space, find a subset maximizing the length of the sum vector. We propose an algorithm that finds an optimal solution to this problem in time $O(n^{d-1}(d+\log n))$. In particular, if the input vectors lie in a plane then the problem is solvable in almost linear time. Illustr. 2, bibliogr. 14.
Keywords: sum vector, search for a vector subset, Euclidean space
Mots-clés : polynomial-time algorithm, optimal solution.
@article{DA_2017_24_4_a7,
     author = {V. V. Shenmaier},
     title = {An exact algorithm for finding a~vector subset with the longest sum},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {111--129},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_4_a7/}
}
TY  - JOUR
AU  - V. V. Shenmaier
TI  - An exact algorithm for finding a~vector subset with the longest sum
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 111
EP  - 129
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_4_a7/
LA  - ru
ID  - DA_2017_24_4_a7
ER  - 
%0 Journal Article
%A V. V. Shenmaier
%T An exact algorithm for finding a~vector subset with the longest sum
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 111-129
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_4_a7/
%G ru
%F DA_2017_24_4_a7
V. V. Shenmaier. An exact algorithm for finding a~vector subset with the longest sum. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 111-129. http://geodesic.mathdoc.fr/item/DA_2017_24_4_a7/

[1] A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, A. V. Pyatkin, “The problem of finding a subset of vectors with the maximum total weight”, J. Appl. Ind. Math., 2:1 (2008), 32–38 | DOI | MR | Zbl

[2] A. E. Baburin, A. V. Pyatkin, “Polynomial algorithms for solving the vector sum problem”, J. Appl. Ind. Math., 1:3 (2007), 268–272 | DOI | MR | Zbl

[3] E. Kh. Gimadi, Yu. V. Glazkov, I. A. Rykov, “On two problems of choosing some subset of vectors with integer coordinates that has maximum norm of the sum of elements in Euclidean space”, J. Appl. Ind. Math., 3:3 (2009), 343–352 | DOI | MR | Zbl

[4] E. Kh. Gimadi, A. V. Kel'manov, M. A. Kel'manova, S. A. Khamidullin, “A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence”, Pattern Recognit. Image Anal., 18:1 (2008), 30–42 | DOI | MR | MR | Zbl

[5] E. Kh. Gimadi, A. V. Pyatkin, I. A. Rykov, “On polynomial solvability of some problems of a vector subset choice in a Euclidean space of fixed dimension”, J. Appl. Ind. Math., 4:1 (2010), 48–53 | DOI | MR | Zbl

[6] A. V. Pyatkin, “On complexity of a choice problem of the vector subset with the maximum sum length”, J. Appl. Ind. Math., 4:4 (2010), 549–552 | DOI | MR | Zbl

[7] V. V. Shenmaier, “Solving some vector subset problems by Voronoi diagrams”, J. Appl. Ind. Math., 10:4 (2016), 560–566 | DOI | DOI | MR | Zbl

[8] Buck R. C., “Partition of space”, Am. Math. Mon., 50:9 (1943), 541–544 | DOI | MR | Zbl

[9] Cormen T. H., Leiserson C. E., Rivest R. L., Stein C., Introduction to algorithms, MIT Press and McGraw-Hill, Cambridge, MA, 2001, 1180 pp. | MR | Zbl

[10] Edelsbrunner H., O'Rourke J., Seidel R., “Constructing arrangements of lines and hyperplanes with applications”, SIAM J. Comput., 15:2 (1986), 341–363 | DOI | MR | Zbl

[11] Hwang F. K., Onn S., Rothblum U. G., “A polynomial time algorithm for shaped partition problems”, SIAM J. Optim., 10:1 (1999), 70–81 | DOI | MR | Zbl

[12] Johnson D. S., Preparata F. P., “The densest hemisphere problem”, Theor. Comp. Sci., 6:1 (1978), 93–107 | DOI | MR | Zbl

[13] Onn S., Schulman L.J., “The vector partition problem for convex objective functions”, Math. Oper. Res., 26:3 (2001), 583–590 | DOI | MR | Zbl

[14] Onn S., Private communication, Nov. 2016