Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2017_24_4_a6, author = {R. Yu. Simanchev}, title = {On facet-inducing inequalities for combinatorial polytopes}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {95--110}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2017_24_4_a6/} }
R. Yu. Simanchev. On facet-inducing inequalities for combinatorial polytopes. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 95-110. http://geodesic.mathdoc.fr/item/DA_2017_24_4_a6/
[1] A. A. Ageev, V. P. Il'ev, A. V. Kononov, A. S. Talevnin, “Computational complexity of the graph approximation problem”, J. Appl. Ind. Math., 1:1 (2007), 1–8 | DOI | MR | Zbl
[2] S. I. Bastrakov, N. Yu. Zolotykh, “Fast method for verifying Chernikov rules in Fourier–Motzkin elimination”, Comput. Math. Math. Phys., 55:1 (2015), 160–167 | DOI | DOI | MR | Zbl
[3] V. A. Emelichev, M. M. Kovalev, M. K. Kravtsov, Polytopes, Graphs and Optimization, Camb. Univ. Press, New York, 1984 | MR | MR
[4] V. P. Il'ev, S. D. Il'eva, A. A. Navrotskaya, “Approximation algorithms for graph approximation problems”, J. Appl. Ind. Math., 5:4 (2011), 569–581 | DOI | MR | Zbl
[5] R. Yu. Simanchev, “On rank inequalities that generate facets of the connected $k$-factors polytope”, Diskretn. Anal. Issled. Oper., 3:3 (1996), 84–110 (Russian) | MR | Zbl
[6] R. Yu. Simanchev, I. V. Urazova, “An integer-valued model for the problem of minimizing the total servicing time of unit claims with parallel devices with precedences”, Autom. Remote Control, 71:10 (2010), 2102–2108 | DOI | MR | Zbl
[7] R. Yu. Simanchev, I. V. Urazova, “On the polytope faces of the graph approximation problem”, J. Appl. Ind. Math., 9:2 (2015), 283–291 | DOI | DOI | MR | Zbl
[8] V. N. Shevchenko, Qualitative Topics in Integer Linear Programming, Transl. Math. Monogr., 156, AMS, Providence, RI, 1997 | MR | MR
[9] Crowder H., Johnson E. L., Padberg M. W., “Solving large-scale zero-one linear programming problems”, Oper. Res., 31:5 (1983), 803–834 | DOI | Zbl
[10] Gottlieb E. S., Rao M. R., “The generalized assignment problem: Valid inequalities and facets”, Math. Program., 46:1–3 (1990), 31–52 | DOI | MR | Zbl
[11] Grötschel M., Holland O., “Solution of large-scale symmetric traveling salesman problems”, Math. Program., 51:1–3 (1991), 141–202 | DOI | MR | Zbl
[12] Grötschel M., Pulleyblank W. R., “Clique tree inequalities and the symmetric traveling salesman problem”, Math. Oper. Res., 11:4 (1986), 537–569 | DOI | MR | Zbl
[13] Korte B., Vygen J., Combinatorial optimization: Theory and algorithms, Algorithms Comb., 21, Springer, Heidelberg, 2006 | MR
[14] Křivánek M., Morávek J., “NP-hard problems in hierarchical-tree clustering”, Acta Inf., 23:3 (1986), 311–323 | DOI | MR
[15] Padberg M. W., “$(1,k)$-Configurations and facets for packing problems”, Math. Program., 18 (1980), 94–99 | DOI | MR | Zbl
[16] Padberg M. W., Rinaldi G., “Facet identification for the symmetric traveling salesman polytope”, Math. Program., 47 (1990), 219–257 | DOI | MR | Zbl
[17] Padberg M. W., Rinaldi G., “A branch and cut algorithm for the resolution of large-scale symmetric traveling salesman problems”, SIAM Rev., 33 (1991), 60–100 | DOI | MR | Zbl
[18] Schrijver A., Combinatorial optimization. Polyhedra and efficiency, Algorithms Comb., 24, Springer, Heidelberg, 2004 | MR | Zbl
[19] Simanchev R. Yu., Urazova I. V., “On the facets of combinatorial polytopes”, Discrete Optimization and Operations Research, Proc. 9th Int. Conf. (Vladivostok, Russia, Sept. 19–23, 2016), Lect. Notes Comput. Sci., 9869, Springer, Cham, 2016, 233–243 | DOI | MR
[20] Wolsey L.A., “Valid inequalities for 0-1 knapsacks and MIPs with generalised upper bound constraints”, Discrete App. Math., 29:2–3 (1990), 251–261 | DOI | MR | Zbl