On the operations of bounded suffix summation and multiplication
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 60-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The operations of bounded suffix summation and bounded suffix multiplication are introduced. Using these operations, we define the class BSSM of polynomially computable functions. It is proved that the class BSSM contains the class BPC defined by the operation of bounded prefix concatenation and has finite basis under superposition. Bibliogr. 13.
Keywords: bounded suffix summation, bounded suffix multiplication.
@article{DA_2017_24_4_a4,
     author = {S. S. Marchenkov},
     title = {On the operations of bounded suffix summation and multiplication},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {60--76},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_4_a4/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On the operations of bounded suffix summation and multiplication
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 60
EP  - 76
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_4_a4/
LA  - ru
ID  - DA_2017_24_4_a4
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On the operations of bounded suffix summation and multiplication
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 60-76
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_4_a4/
%G ru
%F DA_2017_24_4_a4
S. S. Marchenkov. On the operations of bounded suffix summation and multiplication. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 60-76. http://geodesic.mathdoc.fr/item/DA_2017_24_4_a4/

[1] S. A. Volkov, “An example of a simple quasi-universal function in the class $\mathcal E^2$ of the Grzegorczyk hierarchy”, Discrete Math. Appl., 16:5 (2006), 513–526 | DOI | DOI | MR | MR | Zbl

[2] A. I. Maltsev, “Iterative algebras and Post manifolds”, Algebra Logika, 5:2 (1966), 5–24 (Russian) | MR | Zbl

[3] A. I. Maltsev, Iterative Post Algebras, Izd. NGU, Novosibirsk, 1976 (Russian) | MR

[4] S. S. Marchenkov, “Elimination of recursion schemas in the Grzegorczyk class $\mathcal E^2$”, Math. Notes Acad. Sci. USSR, 5:5 (1969), 336–340 | MR | Zbl

[5] S. S. Marchenkov, “On bounded recursions”, Math. Balk., 2 (1972), 124–142 (Russian) | MR

[6] S. S. Marchenkov, “Bases under superposition in the classes of recursive functions”, Mathematical Problems of Cybernetics, 3, Nauka, Moscow, 1991, 115–139 (Russian) | MR | Zbl

[7] S. S. Marchenkov, “Superpositions of elementary arithmetical functions”, J. Appl. Ind. Math., 1:3 (2007), 351–360 | DOI | MR | Zbl

[8] S. S. Marchenkov, Elementary Arithmetical Functions, LIBROKOM, Moscow, 2009 (Russian)

[9] S. S. Marchenkov, “Bounded monotonic recursion and multihead automata”, Program. Comput. Softw., 39:6 (2013), 301–308 | DOI | MR | Zbl

[10] S. S. Marchenkov, “On elementary word functions obtained by bounded prefix concatenation”, Discrete Math. Appl., 26:3 (2016), 155–163 | DOI | DOI | MR | Zbl

[11] S. S. Marchenkov, Classes of Elementary Recursive Functions, FIZMATLIT, Moscow, 2016 (Russian)

[12] K. V. Osipov, “On quasi-universal word functions”, Mosc. Univ. Comput. Math. Cybern., 40:1 (2016), 28–34 | DOI | MR | Zbl

[13] Kalmár L., “Ein einfaches Beispiel für ein unentscheidbares arithmetisches Problem”, Mat. Fiz. Lapok, 50 (1943), 1–23 (Hungarian) | MR | Zbl