On computational complexity of the electric power flow optimization problem in market environment
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 47-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under consideration is the electric power flow optimization problem for an electric power system which typically arises in calculation of electrical power auctions in the “day-ahead” and balancing markets. It was established that the problem of finding a feasible flow in the balancing market is NP-hard in the strong sense even in case of one generator. The problem of finding an optimal flow in the day-ahead market is proved to be NP-hard even with one generator and without controlled cuts. Bibliogr. 10.
Keywords: computational complexity, electric power system, market.
@article{DA_2017_24_4_a3,
     author = {A. V. Eremeev},
     title = {On computational complexity of the electric power flow optimization problem in market environment},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {47--59},
     year = {2017},
     volume = {24},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_4_a3/}
}
TY  - JOUR
AU  - A. V. Eremeev
TI  - On computational complexity of the electric power flow optimization problem in market environment
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 47
EP  - 59
VL  - 24
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_4_a3/
LA  - ru
ID  - DA_2017_24_4_a3
ER  - 
%0 Journal Article
%A A. V. Eremeev
%T On computational complexity of the electric power flow optimization problem in market environment
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 47-59
%V 24
%N 4
%U http://geodesic.mathdoc.fr/item/DA_2017_24_4_a3/
%G ru
%F DA_2017_24_4_a3
A. V. Eremeev. On computational complexity of the electric power flow optimization problem in market environment. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 47-59. http://geodesic.mathdoc.fr/item/DA_2017_24_4_a3/

[1] G. I. Atabekov, Theoretical Foundations of Electrical Engineering: Linear Circuits, Lan', St. Petersburg, 2009 (Russian)

[2] V. M. Gornshtein, D. S. Miroshnichenko, A. V. Ponomarev et al., Methods for Optimization of Power System States, Energiya, Moscow, 1981 (Russian)

[3] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | MR | Zbl

[4] M. R. Davidson, Yu. V. Dogadushkina, E. M. Kreines, N. M. Novikova, Yu. A. Udal'tsov, L. V. Shiryaeva, “Mathematical model of the competitive wholesale power market in Russia”, J. Comput. Syst. Sci. Int., 43:3 (2004), 394–405

[5] M. R. Davidson, Yu. V. Dogadushkina, E. M. Kreines, N. M. Novikova, A. V. Seleznev, Yu. A. Udal'tsov, L. V. Shiryaeva, “Mathematical model of power system management in conditions of a competitive wholesale electric power (capacity) market in Russia”, J. Comput. Syst. Sci. Int., 48:2 (2009), 243–253 | DOI | Zbl

[6] Caramanis M. C., Bohn R. E., Schweppe F. C., “Optimal spot pricing: Practice and theory”, IEEE Trans. Power Appar. Syst., 101:9 (1982), 3234–3245 | DOI

[7] Hogan W. W., “Contract networks for electric power transmission”, J. Regul. Econ., 4:3 (1992), 211–242 | DOI

[8] Palma-Benhke R., Philpott A., Jofré A., Cortés-Carmona M., “Modelling network constrained economic dispatch problems”, Optim. Eng., 14:3 (2013), 417–430 | DOI | MR | Zbl

[9] River M., Pérez-Arriaga I. J., Luengo G., “JUANAC: A model for computation of spot prices in interconnected power systems”, Proc. 10th Power Syst. Comput. Conf. (Graz, Aug. 19–24, 1990), Butterworths, London, 1990, 254–261

[10] Schweppe F. C., Caramanis M. C., Tabors R. D., Bohn R. E., Spot pricing in electricity, Kluwer Acad. Publ., Norwell, MA, 1988, 355 pp.