On computational complexity of the electric power flow optimization problem in market environment
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 47-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the electric power flow optimization problem for an electric power system which typically arises in calculation of electrical power auctions in the “day-ahead” and balancing markets. It was established that the problem of finding a feasible flow in the balancing market is NP-hard in the strong sense even in case of one generator. The problem of finding an optimal flow in the day-ahead market is proved to be NP-hard even with one generator and without controlled cuts. Bibliogr. 10.
Keywords: computational complexity, electric power system, market.
@article{DA_2017_24_4_a3,
     author = {A. V. Eremeev},
     title = {On computational complexity of the electric power flow optimization problem in market environment},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {47--59},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_4_a3/}
}
TY  - JOUR
AU  - A. V. Eremeev
TI  - On computational complexity of the electric power flow optimization problem in market environment
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 47
EP  - 59
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_4_a3/
LA  - ru
ID  - DA_2017_24_4_a3
ER  - 
%0 Journal Article
%A A. V. Eremeev
%T On computational complexity of the electric power flow optimization problem in market environment
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 47-59
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_4_a3/
%G ru
%F DA_2017_24_4_a3
A. V. Eremeev. On computational complexity of the electric power flow optimization problem in market environment. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 47-59. http://geodesic.mathdoc.fr/item/DA_2017_24_4_a3/

[1] G. I. Atabekov, Theoretical Foundations of Electrical Engineering: Linear Circuits, Lan', St. Petersburg, 2009 (Russian)

[2] V. M. Gornshtein, D. S. Miroshnichenko, A. V. Ponomarev et al., Methods for Optimization of Power System States, Energiya, Moscow, 1981 (Russian)

[3] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | MR | Zbl

[4] M. R. Davidson, Yu. V. Dogadushkina, E. M. Kreines, N. M. Novikova, Yu. A. Udal'tsov, L. V. Shiryaeva, “Mathematical model of the competitive wholesale power market in Russia”, J. Comput. Syst. Sci. Int., 43:3 (2004), 394–405

[5] M. R. Davidson, Yu. V. Dogadushkina, E. M. Kreines, N. M. Novikova, A. V. Seleznev, Yu. A. Udal'tsov, L. V. Shiryaeva, “Mathematical model of power system management in conditions of a competitive wholesale electric power (capacity) market in Russia”, J. Comput. Syst. Sci. Int., 48:2 (2009), 243–253 | DOI | Zbl

[6] Caramanis M. C., Bohn R. E., Schweppe F. C., “Optimal spot pricing: Practice and theory”, IEEE Trans. Power Appar. Syst., 101:9 (1982), 3234–3245 | DOI

[7] Hogan W. W., “Contract networks for electric power transmission”, J. Regul. Econ., 4:3 (1992), 211–242 | DOI

[8] Palma-Benhke R., Philpott A., Jofré A., Cortés-Carmona M., “Modelling network constrained economic dispatch problems”, Optim. Eng., 14:3 (2013), 417–430 | DOI | MR | Zbl

[9] River M., Pérez-Arriaga I. J., Luengo G., “JUANAC: A model for computation of spot prices in interconnected power systems”, Proc. 10th Power Syst. Comput. Conf. (Graz, Aug. 19–24, 1990), Butterworths, London, 1990, 254–261

[10] Schweppe F. C., Caramanis M. C., Tabors R. D., Bohn R. E., Spot pricing in electricity, Kluwer Acad. Publ., Norwell, MA, 1988, 355 pp.