On $(1,l)$-coloring of incidentors of multigraphs
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 34-46

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $l$ is at least $\Delta/2-1$ then $(1,l)$-chromatic number of an arbitrary multigraph of maximum degree $\Delta$ is at most $\Delta+1$. Moreover, it is proved that the incidentors of every directed prism can be colored in four colors so that every two adjacent incidentors are colored distinctly and the difference between the colors of the final and initial incidentors of each arc is $1$. Illustr. 1, bibliogr. 10.
Keywords: incidentor coloring, $(1,l)$-coloring
Mots-clés : prism.
@article{DA_2017_24_4_a2,
     author = {M. O. Golovachev and A. V. Pyatkin},
     title = {On $(1,l)$-coloring of incidentors of multigraphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {34--46},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_4_a2/}
}
TY  - JOUR
AU  - M. O. Golovachev
AU  - A. V. Pyatkin
TI  - On $(1,l)$-coloring of incidentors of multigraphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 34
EP  - 46
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_4_a2/
LA  - ru
ID  - DA_2017_24_4_a2
ER  - 
%0 Journal Article
%A M. O. Golovachev
%A A. V. Pyatkin
%T On $(1,l)$-coloring of incidentors of multigraphs
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 34-46
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_4_a2/
%G ru
%F DA_2017_24_4_a2
M. O. Golovachev; A. V. Pyatkin. On $(1,l)$-coloring of incidentors of multigraphs. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 34-46. http://geodesic.mathdoc.fr/item/DA_2017_24_4_a2/