An upper bound for the competitive location and capacity choice problem with multiple demand scenarios
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 5-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new mathematical model is considered related to competitive location problems where two competing parties, the Leader and the Follower, successively open their facilities and try to win customers. In the model, we consider a situation of several alternative demand scenarios which differ by the composition of customers and their preferences. We assume that the costs of opening a facility depend on its capacity; therefore, the Leader, making decisions on the placement of facilities, must determine their capacities taking into account all possible demand scenarios and the response of the Follower. For the bilevel model suggested, a problem of finding an optimistic optimal solution is formulated. We show that this problem can be represented as a problem of maximizing a pseudo-Boolean function with the number of variables equal to the number of possible locations of the Leader’s facilities.We propose a novel system of estimating the subsets that allows us to supplement the estimating problems, used to calculate the upper bounds for the constructed pseudo-Boolean function, with additional constraints which improve the upper bounds. Bibliogr. 13.
Keywords: competitive facility location, bilevel programming, upper bound.
@article{DA_2017_24_4_a0,
     author = {V. L. Beresnev and A. A. Melnikov},
     title = {An upper bound for the competitive location and capacity choice problem with multiple demand scenarios},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_4_a0/}
}
TY  - JOUR
AU  - V. L. Beresnev
AU  - A. A. Melnikov
TI  - An upper bound for the competitive location and capacity choice problem with multiple demand scenarios
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 5
EP  - 21
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_4_a0/
LA  - ru
ID  - DA_2017_24_4_a0
ER  - 
%0 Journal Article
%A V. L. Beresnev
%A A. A. Melnikov
%T An upper bound for the competitive location and capacity choice problem with multiple demand scenarios
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 5-21
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_4_a0/
%G ru
%F DA_2017_24_4_a0
V. L. Beresnev; A. A. Melnikov. An upper bound for the competitive location and capacity choice problem with multiple demand scenarios. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 4, pp. 5-21. http://geodesic.mathdoc.fr/item/DA_2017_24_4_a0/

[1] V. L. Beresnev, “On the competitive facility location problem with a free choice of suppliers,” | DOI | MR | Zbl

[2] Autom. Remote Control, 75:4 (2014), 668–676 | DOI | MR | Zbl

[3] V. L. Beresnev, A. A. Mel'nikov, “A capacitated competitive facility location problem”, J. Appl. Ind. Math., 10:1 (2016), 61–68 | DOI | DOI | MR | MR | Zbl

[4] A. A. Mel'nikov, “Randomized local search for the discrete competitive facility location problem”, Autom. Remote Control, 75:4 (2014), 700–714 | DOI | MR | Zbl

[5] Ashtiani M., “Competitive location: A state-of-art review”, Int. J. Ind. Eng. Comput., 7:1 (2016), 1–18

[6] Beresnev V. L., “Branch-and-bound algorithm for competitive facility location problem”, Comput. Oper. Res., 40:8 (2013), 2062–2070 | DOI | MR | Zbl

[7] Davydov I. A., Kochetov Yu. A., Carrizosa E., “A local search heuristic for the $(r|p)$-centroid problem in the plane”, Comput. Oper. Res., 52, Pt. B (2014), 334–340 | DOI | MR | Zbl

[8] Dempe S., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 332 pp. | MR | Zbl

[9] Drezner T., Drezner Z., Kalczynski P., “A leader-follower model for discrete competitive facility location”, Comput. Oper. Res., 64 (2015), 51–59 | DOI | MR | Zbl

[10] Eiselt H. A., Laporte G., “Sequential location problems”, Eur. J. Oper. Res., 96:2 (1996), 217–231 | DOI | MR

[11] Jakubovskis A., “Strategic facility location, capacity acquisition, and technology choice decisions under demand uncertainty: Robust vs. non-robust optimization approaches”, Eur. J. Oper. Res., 260:3 (2017), 1095–1104 | DOI | MR

[12] Karakitsiou A., Modeling discrete competitive facility location, SpringerBriefs in Optimization, Springer, Cham, 2015, 54 pp. | DOI | MR | Zbl

[13] von Stackelberg H., The theory of the market economy, Oxf. Univ. Press, Oxford, 1952, 289 pp.

[14] Zhang Y., Snyder L. V., Ralphs T. K., Xue Z., “The competitive facility location problem under disruption risks”, Transp. Res. Part E: Logistics and Transportation Review, 93 (2016), 453–473 | DOI