Computational complexity of the original and extended Diophantine Frobenius problem
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 3, pp. 104-124

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce the law of nonstationary recursion which makes it possible, for given a primitive set $A = \{a_1,\ldots,a_k\}$, $k>2$, to construct an algorithm for finding the set of the numbers outside the additive semigroup generated by $A$. In particular, we obtain a new algorithm for determining the Frobenius numbers $g(a_1,\ldots,a_k)$. The computational complexity of these algorithms is estimated in terms of bit operations. We propose a two-stage reduction of the original primitive set to an equivalent primitive set that enables us to improve complexity estimates in the cases when the two-stage reduction leads to a substantial reduction of the order of the initial set. Bibliogr. 16.
Keywords: Frobenius number, primitive set, additive semigroup, computational complexity.
@article{DA_2017_24_3_a5,
     author = {V. M. Fomichev},
     title = {Computational complexity of the original and extended {Diophantine} {Frobenius} problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {104--124},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_3_a5/}
}
TY  - JOUR
AU  - V. M. Fomichev
TI  - Computational complexity of the original and extended Diophantine Frobenius problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 104
EP  - 124
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_3_a5/
LA  - ru
ID  - DA_2017_24_3_a5
ER  - 
%0 Journal Article
%A V. M. Fomichev
%T Computational complexity of the original and extended Diophantine Frobenius problem
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 104-124
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_3_a5/
%G ru
%F DA_2017_24_3_a5
V. M. Fomichev. Computational complexity of the original and extended Diophantine Frobenius problem. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 3, pp. 104-124. http://geodesic.mathdoc.fr/item/DA_2017_24_3_a5/