Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2017_24_3_a5, author = {V. M. Fomichev}, title = {Computational complexity of the original and extended {Diophantine} {Frobenius} problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {104--124}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2017_24_3_a5/} }
TY - JOUR AU - V. M. Fomichev TI - Computational complexity of the original and extended Diophantine Frobenius problem JO - Diskretnyj analiz i issledovanie operacij PY - 2017 SP - 104 EP - 124 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2017_24_3_a5/ LA - ru ID - DA_2017_24_3_a5 ER -
V. M. Fomichev. Computational complexity of the original and extended Diophantine Frobenius problem. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 3, pp. 104-124. http://geodesic.mathdoc.fr/item/DA_2017_24_3_a5/
[1] V. I. Arnold, Experimental observation of mathematical facts, MTsNMO, M., 2006
[2] A. V. Ustinov, “The solution of Arnold's problem on the weak asymptotics of Frobenius numbers with three arguments”, Sb. Math., 200:4 (2009), 597–627 | DOI | DOI | MR | Zbl
[3] A. V. Ustinov, “Geometric proof of Rødseth's formula for Frobenius numbers”, Proc. Steklov Inst. Math., 276:1 (2012), 275–282 | DOI | MR | Zbl
[4] V. M. Fomichev, “Primitive sets of numbers being equivalent by Frobenius”, Prikladn. Diskretn. Mat., 2014, no. 1, 20–26
[5] V. M. Fomichev, “Estimates for exponent of some graphs by means of Frobenius's numbers of three arguments”, Prikladn. Diskretn. Mat., 2014, no. 2, 88–96
[6] Böcker S., Lipták Zs., “The Money Changing Problem revisited: Computing the Frobenius number in time $O(ka_1)$”, Computing and Combinatorics, Proc. 4th Annu. Int. Conf. (Kunming, China, Aug. 16–19, 2005), Lect. Notes Comput. Sci., 3595, Springer, Heidelberg, 2005, 965–974 | DOI | MR | Zbl
[7] Bogart C., Calculating Frobenius numbers with Boolean Toeplitz matrix multiplication, , 2009 (accessed Mar. 10, 2017) http://quetzal.bogarthome.net/frobenius.pdf
[8] Brauer A., “On a problem of partitions”, Am. J. Math., 64 (1942), 299–312 | DOI | MR | Zbl
[9] Brauer A., Shockley J. E., “On a problem of Frobenius”, J. Reine Angew. Math., 211 (1962), 215–220 | MR | Zbl
[10] Curtis F., “On formulas for the Frobenius number of a numerical semigroup”, Math. Scand., 67 (1990), 190–192 | DOI | MR | Zbl
[11] Heap B. R., Lynn M. S., “A graph-theoretic algorithm for the solution of a linear Diophantine problem of Frobenius”, Numer. Math., 6 (1964), 346–354 | DOI | MR | Zbl
[12] Heap B. R., Lynn M. S., “On a linear Diophantine problem of Frobenius: an improved algorithm”, Numer. Math., 7 (1965), 226–231 | DOI | MR | Zbl
[13] Johnson D. B., “Efficient algorithms for shortest paths in space networks”, JACM, 24 (1977), 1–13 | DOI | MR | Zbl
[14] Nijenhuis M., “A minimal-path algorithm for the “Money changing problem””, Am. Math. Mon., 86 (1979), 832–835 | DOI | MR | Zbl
[15] Ramírez Alfonsín J. L., The Diophantine Frobenius problem, Oxf. Lect. Ser. Math. Appl., 30, Clarendon Press, Oxford, 2005, 243 pp. | MR
[16] Sylvester J. J., “Problem 7382”, Mathematical Questions with Their Solutions, Educational Times, 41, Francis Hodgson, London, 1884, 21 (Accessed Mar. 10, 2017) http://archive.org/stream/mathematicalque05unkngoog#page/n150/mode/2up