Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2017_24_3_a4, author = {K. A. Popkov}, title = {On the exact value of the length of the minimal single diagnostic test for a particular class of circuits}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {80--103}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2017_24_3_a4/} }
TY - JOUR AU - K. A. Popkov TI - On the exact value of the length of the minimal single diagnostic test for a particular class of circuits JO - Diskretnyj analiz i issledovanie operacij PY - 2017 SP - 80 EP - 103 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2017_24_3_a4/ LA - ru ID - DA_2017_24_3_a4 ER -
%0 Journal Article %A K. A. Popkov %T On the exact value of the length of the minimal single diagnostic test for a particular class of circuits %J Diskretnyj analiz i issledovanie operacij %D 2017 %P 80-103 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2017_24_3_a4/ %G ru %F DA_2017_24_3_a4
K. A. Popkov. On the exact value of the length of the minimal single diagnostic test for a particular class of circuits. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 3, pp. 80-103. http://geodesic.mathdoc.fr/item/DA_2017_24_3_a4/
[1] Yu. V. Borodina, “Synthesis of easily-tested circuits in the case of single-type constant malfunctions at the element outputs”, Mosc. Univ. Comput. Math. Cybern., 32:1 (2008), 42–46 | DOI | MR | Zbl
[2] Yu. V. Borodina, “Circuits admitting single-fault tests of length 1 under constant faults at outputs of elements”, Mosc. Univ. Math. Bull., 63:5 (2008), 202–204 | DOI | MR | Zbl
[3] Yu. V. Borodina, P. A. Borodin, “Synthesis of easily testable circuits over the Zhegalkin basis in the case of constant faults of type 0 at outputs of elements”, Discrete Math. Appl., 20:4 (2010), 441–449 | DOI | DOI | MR | Zbl
[4] S. S. Kolyada, Upper bounds on the length of fault detection tests for logic circuits, Cand. Sci. Dissertation, Mosk. Gos. Univ., M., 2013 (Russian)
[5] N. P. Red'kin, “On complete fault detection tests for logic circuits”, Vestn. Mosk. Univ., Ser. 1, 1986, no. 1, 72–74 (Russian)
[6] N. P. Red'kin, “On circuits admitting short tests,”, Vestn. Mosk. Univ., Ser. 1, 1988, no. 2, 17–21 (Russian)
[7] N. P. Red'kin, “On complete fault detection tests for logic circuits”, Mathematical Problems of Cybernetics, 2, Nauka, M., 1989, 198–222 (Russian) | Zbl
[8] N. P. Red'kin, Reliability and Diagnosis of Circuits, Izd. MGU, M., 1992 (Russian)
[9] N. P. Red'kin, “On single-fault diagnostic tests for one-type constant faults at outputs of gates”, Vestn. Mosk. Univ., Ser. 1, 1992, no. 5, 43–46 (Russian)
[10] D. S. Romanov, “On the synthesis of circuits admitting complete fault detection test sets of constant length under arbitrary constant faults at the outputs of the gates”, Discrete Math. Appl., 23:3–4 (2013), 343–362 | DOI | MR | Zbl
[11] D. S. Romanov, “Method of synthesis of easily testable circuits admitting single fault detection tests of constant length”, Discrete Math. Appl., 24:4 (2014), 227–251 | DOI | DOI | MR | Zbl
[12] A. B. Ugol'nikov, The Post Classes, Izd. TsPI Mekh.-Mat. Fak. MGU, M., 2008 (Russian)
[13] I. A. Chegis, S. V. Yablonskii, “Logical methods for control of electric circuits”, Tr. MIAN SSSR, 51, 1958, 270–360 (Russian) | Zbl
[14] S. V. Yablonskii, “Reliability and monitoring of control systems”, Proc. All-Union Seminar on Discrete Math. and Its Applications (Moscow, Russia, Jan. 31 – Feb. 2, 1984), Izd. MGU, M., 1986, 7–12 (Russian)
[15] S. V. Yablonskii, “Certain questions of reliability and monitoring of control systems”, Mathematical Problems of Cybernetics, 1, Nauka, M., 1988, 5–25 (Russian)
[16] DasGupta S., Hartmann C. R. P., Rudolph L. D., “Dual-mode logic for function-independent fault testing”, IEEE Trans. Comput., 29:11 (1980), 1025–1029 | DOI | MR | Zbl
[17] Geetha V., Devarajan N., Neelakantan P. N., “Network structure for testability improvement in exclusive-OR sum of products Reed–Muller canonical circuits”, Int. J. Eng. Res. Gen. Sci., 3:3 (2015), 368–378
[18] Hayes J. P., “On modifying logic networks to improve their diagnosability”, IEEE Trans. Comput., 23:1 (1974), 56–62 | DOI | MR
[19] Hirayama T., Koda G., Nishitani Y., Shimizu K., “Easily testable realization based on single-rail-input OR-AND-EXOR expressions”, IEICE Trans. Inf. Syst., E82-D:9 (1999), 1278–1286
[20] Jameil A. K., “A new single stuck fault detection algorithm for digital circiuts”, Int. J. Eng. Res. Gen. Sci., 3:1 (2015), 1050–1056
[21] Neelakantan P. N., Ebenezer Jeyakumar. A., “Single stuck-at fault diagnosing circuit of Reed–Muller canonical exclusive-or sum of product Boolean expressions”, J. Comput. Sci., 2:7 (2006), 595–599 | DOI
[22] Rahagude N. P., Integrated enhancement of testability and diagnosability for digital circuits, MA Sci. Diss., VA Polytech. Inst. State Univ., Blacksburg, VA, 2010, 75 pp.
[23] Rahaman H., Das D. K., Bhattacharya B. B., “Testable design of AND-EXOR logic networks with universal test sets”, Comput. Electric. Eng., 35:5 (2009), 644–658 | DOI | Zbl
[24] Reddy S. M., “Easily testable realizations for logic functions”, IEEE Trans. Comput., 21:11 (1972), 1183–1188 | DOI | MR | Zbl
[25] Saluja K. K., Reddy S. M., “On minimally testable logic networks”, IEEE Trans. Comput., 23:5 (1974), 552–554 | DOI | MR | Zbl
[26] Saluja K. K., Reddy S. M., “Fault detecting test sets for Reed-Muller canonic networks”, IEEE Trans. Comput., 24:10 (1975), 995–998 | DOI | MR
[27] Singh S. P., Sagar B. B., “Stuck-at fault detection in combinational network coefficients of the RMC with fixed polarity (Reed–Muller coefficients)”, Int. J. Emerg. Trends Electr. Electron., 1:3 (2013), 93–96