Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2017_24_2_a4, author = {T. I. Fedoryaeva}, title = {Asymptotic approximation for the number of graphs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {68--86}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2017_24_2_a4/} }
T. I. Fedoryaeva. Asymptotic approximation for the number of graphs. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 2, pp. 68-86. http://geodesic.mathdoc.fr/item/DA_2017_24_2_a4/
[1] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lectures on Graph Theory, B. I. Wissenschaftsverlag, Mannheim, 1994 | MR | MR
[2] T. I. Fedoryaeva, “The diversity vector of balls of a typical graph of small diameter”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 43–54 (Russian) | DOI | MR | Zbl
[3] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, USA, 1969 | MR | MR | Zbl
[4] S. V. Yablonskii, Introduction to Discrete Mathematics, Nauka, Moscow, 1986 (Russian) | MR
[5] Füredi Z., Kim Y., The number of graphs of given diameter, Cornell Univ. Libr. e-Print Archive, 2012, 13 pp., arXiv: 1204.4580[math.CO]
[6] Kim Y., Problems in extremal combinatorics, Thes. $\dots$ doct. philosophy (mathematics), Univ. Illinois Urbana-Champaign, Urbana, Champaign, 2011 | MR
[7] Moon J. W., Moser L., “Almost all $(0,1)$ matrices are primitive”, Stud. Sci. Math. Hung., 1 (1966), 153–156 | MR | Zbl
[8] Tomescu I., “An asymptotic formula for the number of graphs having small diameter”, Discrete Math., 156:1–3 (1996), 219–228 | DOI | MR | Zbl
[9] Tomescu I., “Almost all graphs and $h$-hypergraphs have small diameter”, Australas. J. Comb., 31 (2005), 313–323 | MR | Zbl