Perfect binary codes of infinite length
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 2, pp. 53-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $C$ of infinite-dimensional binary cube is called a perfect binary code with distance 3 if all balls of radius 1 (in the Hamming metric) with centers in $C$ are pairwise disjoint and their union cover this binary cube. Similarly, we can define a perfect binary code in zero layer, consisting of all vectors of infinite-dimensional binary cube having finite supports. In this article we prove that the cardinality of all cosets of perfect binary codes in zero layer is the cardinality of the continuum. Moreover, the cardinality of all cosets of perfect binary codes in the whole binary cube is equal to the cardinality of the hypercontinuum. Bibliogr. 9.
Keywords: perfect binary code, Hamming code, component, continuum, hypercontinuum.
Mots-clés : Vasil'ev code
@article{DA_2017_24_2_a3,
     author = {S. A. Malyugin},
     title = {Perfect binary codes of infinite length},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {53--67},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_2_a3/}
}
TY  - JOUR
AU  - S. A. Malyugin
TI  - Perfect binary codes of infinite length
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 53
EP  - 67
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_2_a3/
LA  - ru
ID  - DA_2017_24_2_a3
ER  - 
%0 Journal Article
%A S. A. Malyugin
%T Perfect binary codes of infinite length
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 53-67
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_2_a3/
%G ru
%F DA_2017_24_2_a3
S. A. Malyugin. Perfect binary codes of infinite length. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 2, pp. 53-67. http://geodesic.mathdoc.fr/item/DA_2017_24_2_a3/

[1] S. V. Avgustinovich, F. I. Solov'eva, “Construction of perfect binary codes by sequential shifts of $\tilde\alpha$-components”, Probl. Inf. Transm., 33:3 (1997), 202–207 | MR | Zbl

[2] Yu. L. Vasil'ev, “On nongroup close-packed codes”, Problems of Cybernetics, 8, ed. A. A. Lyapunov, Fizmatgiz, Moscow, 1962, 337–339 (Russian) | Zbl

[3] S. A. Malyugin, “On enumeration of the perfect binary codes of length 15”, Discrete Appl. Math., 135:1–3 (2004), 161–181 | DOI | MR | MR | Zbl

[4] S. A. Malyugin, “Nonsystematic perfect binary codes”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:1 (2001), 55–76 (Russian) | MR | Zbl

[5] S. A. Malyugin, “Perfect binary codes of infinite length”, Prikl. Diskretn. Mat., Prilozh., 2015, no. 8, 117–120 (Russian)

[6] V. N. Potapov, “Infinite-dimensional quasigroups of finite orders”, Math. Notes, 93:3 (2013), 479–486 | DOI | DOI | MR | Zbl

[7] A. M. Romanov, “On construction of perfect nonlinear binary codes by symbol inversion”, Diskretn. Anal. Issled. Oper., Ser. 1, 4:1 (1997), 46–52 (Russian) | MR | Zbl

[8] Phelps K. T., LeVan M., “Kernels of nonlinear Hamming codes”, Des. Codes Cryptogr., 6:3 (1995), 247–257 | DOI | MR | Zbl

[9] Solov'eva F. I., “Switchings and perfect codes”, Numbers, information and complexity, Kluwer Acad. Publ., Dordrecht, 2000, 311–324 | DOI | MR | Zbl