Mots-clés : Vasil'ev code
@article{DA_2017_24_2_a3,
author = {S. A. Malyugin},
title = {Perfect binary codes of infinite length},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {53--67},
year = {2017},
volume = {24},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2017_24_2_a3/}
}
S. A. Malyugin. Perfect binary codes of infinite length. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 2, pp. 53-67. http://geodesic.mathdoc.fr/item/DA_2017_24_2_a3/
[1] S. V. Avgustinovich, F. I. Solov'eva, “Construction of perfect binary codes by sequential shifts of $\tilde\alpha$-components”, Probl. Inf. Transm., 33:3 (1997), 202–207 | MR | Zbl
[2] Yu. L. Vasil'ev, “On nongroup close-packed codes”, Problems of Cybernetics, 8, ed. A. A. Lyapunov, Fizmatgiz, Moscow, 1962, 337–339 (Russian) | Zbl
[3] S. A. Malyugin, “On enumeration of the perfect binary codes of length 15”, Discrete Appl. Math., 135:1–3 (2004), 161–181 | DOI | MR | MR | Zbl
[4] S. A. Malyugin, “Nonsystematic perfect binary codes”, Diskretn. Anal. Issled. Oper., Ser. 1, 8:1 (2001), 55–76 (Russian) | MR | Zbl
[5] S. A. Malyugin, “Perfect binary codes of infinite length”, Prikl. Diskretn. Mat., Prilozh., 2015, no. 8, 117–120 (Russian)
[6] V. N. Potapov, “Infinite-dimensional quasigroups of finite orders”, Math. Notes, 93:3 (2013), 479–486 | DOI | DOI | MR | Zbl
[7] A. M. Romanov, “On construction of perfect nonlinear binary codes by symbol inversion”, Diskretn. Anal. Issled. Oper., Ser. 1, 4:1 (1997), 46–52 (Russian) | MR | Zbl
[8] Phelps K. T., LeVan M., “Kernels of nonlinear Hamming codes”, Des. Codes Cryptogr., 6:3 (1995), 247–257 | DOI | MR | Zbl
[9] Solov'eva F. I., “Switchings and perfect codes”, Numbers, information and complexity, Kluwer Acad. Publ., Dordrecht, 2000, 311–324 | DOI | MR | Zbl