Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2017_24_2_a0, author = {I. S. Bykov and A. L. Perezhogin}, title = {On distance {Gray} codes}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--17}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2017_24_2_a0/} }
I. S. Bykov; A. L. Perezhogin. On distance Gray codes. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 2, pp. 5-17. http://geodesic.mathdoc.fr/item/DA_2017_24_2_a0/
[1] I. S. Bykov, “On locally balanced Gray codes”, J. Appl. Ind. Math., 10:1 (2016), 78–85 | DOI | DOI | MR | Zbl
[2] A. A. Evdokimov, “On enumeration of subsets of a finite set”, Methods of Discrete Analysis for Solving Combinatorial Problems, 34, Izd. Inst. Mat., Novosibirsk, 1980, 8–26 (Russian)
[3] A. L. Perezhogin, “On automorphisms of cycles in an $n$-dimensional Boolean cube”, Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007), 67–79 (Russian) | MR | Zbl
[4] Chang G. J., Eu S.-P., Yeh C.-H., “On the $(n,t)$-antipodal Gray codes”, Theor. Comput. Sci., 374:1–3 (2007), 82–90 | DOI | MR | Zbl
[5] Goddyn L., Gvozdjak P., “Binary Gray codes with long bit runs”, Electron. J. Comb., 10 (2003), R27, 10 pp. | MR | Zbl
[6] Goddyn L., Lawrence G. M., Nemeth E., “Gray codes with optimized run lengths”, Util. Math., 34 (1988), 179–192 | MR | Zbl
[7] Killian C., Savage C., “Antipodal Gray codes”, Discrete Math., 281 (2002), 221–236 | DOI | MR
[8] Knuth D. E., The art of computer programming, Addison-Wesley, Reading, MA, 2004 | MR
[9] Savage C., “A survey of combinatorial Gray codes”, SIAM Rev., 39:4 (1996), 605–629 | DOI | MR