On distance Gray codes
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 2, pp. 5-17

Voir la notice de l'article provenant de la source Math-Net.Ru

A Gray code of size $n$ is a cyclic sequence of all binary words of length $n$ such that two consecutive words differ exactly in one position. We say that the Gray code is a distance code if the Hamming distance between words located at distance $k$ from each other is equal to $d$. The distance property generalizes the familiar concepts of a locally balanced Gray code. We prove that there are no distance Gray codes with $d=1$ for $k>1$. Some examples of constructing distance Gray codes are given. For one infinite series of parameters, it is proved that there are no distance Gray codes. Tab. 5, bibliogr. 9.
Keywords: $n$-cube, Hamiltonian cycle, Gray code, uniform Gray code
Mots-clés : antipodal Gray code.
@article{DA_2017_24_2_a0,
     author = {I. S. Bykov and A. L. Perezhogin},
     title = {On distance {Gray} codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_2_a0/}
}
TY  - JOUR
AU  - I. S. Bykov
AU  - A. L. Perezhogin
TI  - On distance Gray codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 5
EP  - 17
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_2_a0/
LA  - ru
ID  - DA_2017_24_2_a0
ER  - 
%0 Journal Article
%A I. S. Bykov
%A A. L. Perezhogin
%T On distance Gray codes
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 5-17
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_2_a0/
%G ru
%F DA_2017_24_2_a0
I. S. Bykov; A. L. Perezhogin. On distance Gray codes. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 2, pp. 5-17. http://geodesic.mathdoc.fr/item/DA_2017_24_2_a0/