Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2017_24_1_a3, author = {P. A. Irzhavskii and Yu. A. Kartynnik and Yu. L. Orlovich}, title = {$1${-Triangle} graphs and perfect neighborhood sets}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {56--80}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2017_24_1_a3/} }
TY - JOUR AU - P. A. Irzhavskii AU - Yu. A. Kartynnik AU - Yu. L. Orlovich TI - $1$-Triangle graphs and perfect neighborhood sets JO - Diskretnyj analiz i issledovanie operacij PY - 2017 SP - 56 EP - 80 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2017_24_1_a3/ LA - ru ID - DA_2017_24_1_a3 ER -
P. A. Irzhavskii; Yu. A. Kartynnik; Yu. L. Orlovich. $1$-Triangle graphs and perfect neighborhood sets. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 56-80. http://geodesic.mathdoc.fr/item/DA_2017_24_1_a3/
[1] C. Bergé, Théorie des graphes et ses applications, Dunod, Paris, 1958 (French) | MR
[2] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | Zbl
[3] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lectures on Graph Theory, B. I. Wissenschaftsverlag, Mannheim, 1994 | MR
[4] Yu. A. Kartynnik, Yu. L. Orlovich, “Domination triangle graphs and upper bound graphs”, Dokl. Nats. Akad. Nauk Belarusi, 58:1 (2014), 16–25 (Russian)
[5] Yu. L. Orlovich, V. S. Gordon, J. Błażewicz, I. E. Zverovich, G. Finke, “Independent dominating and neighborhood sets in triangular graphs”, Dokl. Nats. Akad. Nauk Belarusi, 53:1 (2009), 39–44 (Russian)
[6] Anbeek C., DeTemple D., McAvaney K. L., Robertson J. M., When are chordal graphs also partition graphs?, Australas. J. Comb., 16 (1997), 285–293 | MR | Zbl
[7] Bollobaś B., Cockayne E. J., “Graph-theoretic parameters concerning domination, independence, and irredundance”, J. Graph Theory, 3:3 (1979), 241–249 | DOI | MR | Zbl
[8] Boros E., Gurvich V., Milanic̆ M., On equistable, split, CIS, and related classes of graphs, 2015, arXiv: 1505.05683 | MR
[9] Cheston G. A., Hare E. O., Hedetniemi S. T., Laskar R. C., “Simplicial graphs”, Congr. Numerantium, 67 (1988), 105–113 | MR | Zbl
[10] Cheston G. A., Jap T. S., “A survey of the algorithmic properties of simplicial, upper bound and middle graphs”, J. Graph Algorithms Appl., 10:2 (2006), 159–190 | DOI | MR | Zbl
[11] DeTemple D., Harary F., Robertson J. M., “Partition graphs”, Soochow J. Math., 13:2 (1987), 121–129 | MR | Zbl
[12] DeTemple D., Robertson J. M., “Graphs associated with triangulations of lattice polygons”, J. Austr. Math. Soc., Ser. A, 47:3 (1989), 391–398 | DOI | MR | Zbl
[13] Guruswami V., Rangan C. P., Chang M. S., Chang G. J., Wong C. K., “The vertex-disjoint triangles problem”, Graph-Theoretic Concepts in Computer Science, Proc. 24th Int. Workshop (Smolenice Castle, Slovak Rep., June 18–20, 1998), Lect. Notes Comput. Sci., 1517, Springer, Heidelberg, 1998, 26–37 | DOI | MR | Zbl
[14] Kloks T., Lee C.-M., Liu J., Müller H., “On the recognition of general partition graphs”, Graph-Theoretic Concepts in Computer Science, Proc. 29th Int. Workshop (Elspeet, The Netherlands, June 19–21, 2003), Lect. Notes Comput. Sci., 2880, Springer, Heidelberg, 2003, 273–283 | DOI | Zbl
[15] McAvaney K., Robertson J., DeTemple D., “A characterization and hereditary properties for partition graphs”, Discrete Math., 113:1 (1993), 131–142 | DOI | MR | Zbl
[16] Miklavic̆ Š., Milanic̆ M., “Equistable graphs, general partition graphs, triangle graphs, and graph products”, Discrete Appl. Math., 159:11 (2011), 1148–1159 | DOI | MR | Zbl
[17] Orlovich Yu. L., Błażewicz J., Dolgui A., Finke G., Gordon V., “On the complexity of the independent set problem in triangle graphs”, Discrete Math., 311:16 (2011), 1670–1680 | DOI | MR | Zbl
[18] Orlovich Yu. L., Zverovich I. E., “Independent domination in triangle graphs”, Electron. Notes Discrete Math., 28 (2007), 341–348 | DOI | MR | Zbl
[19] Sampathkumar E., Neeralagi P. S., “The neighbourhood number of a graph”, Indian J. Pure Appl. Math., 16 (1985), 126–132 | MR | Zbl
[20] Sampathkumar E., Neeralagi P. S., “Independent, perfect and connected neighbourhood numbers of a graph”, J. Comb. Inf. Syst. Sci., 19:3–4 (1994), 139–145 | MR | Zbl