$1$-Triangle graphs and perfect neighborhood sets
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 56-80
Voir la notice de l'article provenant de la source Math-Net.Ru
A graph is called a $1$-triangle if, for its every maximal independent set $I$, every edge of this graph with both endvertices not belonging to $I$ is contained exactly in one triangle with a vertex of $I$. We obtain a characterization of $1$-triangle graphs which implies a polynomial time recognition algorithm. Computational complexity is established within the class of $1$-triangle graphs for a range of graph-theoretical parameters related to independence and domination. In particular, $\mathrm{NP}$-completeness is established for the minimum perfect neighborhood set problem in the class of all graphs. Bibliogr. 20.
Keywords:
triangle graph, edge-simplicial graph, characterization, perfect neighborhood set, $\mathrm{NP}$-completeness.
@article{DA_2017_24_1_a3,
author = {P. A. Irzhavskii and Yu. A. Kartynnik and Yu. L. Orlovich},
title = {$1${-Triangle} graphs and perfect neighborhood sets},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {56--80},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2017_24_1_a3/}
}
TY - JOUR AU - P. A. Irzhavskii AU - Yu. A. Kartynnik AU - Yu. L. Orlovich TI - $1$-Triangle graphs and perfect neighborhood sets JO - Diskretnyj analiz i issledovanie operacij PY - 2017 SP - 56 EP - 80 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2017_24_1_a3/ LA - ru ID - DA_2017_24_1_a3 ER -
P. A. Irzhavskii; Yu. A. Kartynnik; Yu. L. Orlovich. $1$-Triangle graphs and perfect neighborhood sets. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 56-80. http://geodesic.mathdoc.fr/item/DA_2017_24_1_a3/