On teaching sets for $2$-threshold functions of two variables
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 31-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $k$-threshold functions of $n$ variables, i.e. the functions representable as the conjunction of $k$ threshold functions. For $n=2$, $k=2$, we give upper bounds for the cardinality of the minimal teaching set depending on the various properties of the function. Illustr. 6, bibliogr. 9.
Keywords: machine learning, threshold function, teaching dimension, teaching set.
@article{DA_2017_24_1_a2,
     author = {E. M. Zamaraeva},
     title = {On teaching sets for $2$-threshold functions of two variables},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {31--55},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/}
}
TY  - JOUR
AU  - E. M. Zamaraeva
TI  - On teaching sets for $2$-threshold functions of two variables
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 31
EP  - 55
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/
LA  - ru
ID  - DA_2017_24_1_a2
ER  - 
%0 Journal Article
%A E. M. Zamaraeva
%T On teaching sets for $2$-threshold functions of two variables
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 31-55
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/
%G ru
%F DA_2017_24_1_a2
E. M. Zamaraeva. On teaching sets for $2$-threshold functions of two variables. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 31-55. http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/

[1] N. Yu. Zolotykh, V. N. Shevchenko, “Estimating the complexity of deciphering a threshold function in a $k$-valued logic”, Comput. Math. Math. Phys., 39:2 (1999), 328–334 | MR | Zbl

[2] V. N. Shevchenko, N. Yu. Zolotykh, “On the complexity of deciphering the threshold functions of $k$-valued logic”, Dokl. Math., 58:2 (1998), 268–270 | MR | Zbl

[3] Alekseyev M. A., Basova M. G., Zolotykh N. Yu., “On the minimal teaching sets of two-dimensional threshold functions”, SIAM J. Discrete Math., 29:1 (2015), 157–165 | DOI | MR | Zbl

[4] Anthony M., Brightwell G., Shawe-Taylor J., “On specifying Boolean functions by labelled examples”, Discrete Appl. Math., 61:1 (1995), 1–25 | DOI | MR | Zbl

[5] Bultman W. J., Maass W., “Fast identification of geometric objects with membership queries”, Inf. Comput., 118 (1995), 48–64 | DOI | MR | Zbl

[6] Chirkov A. Yu., Zolotykh N. Yu., “On the number of irreducible points in polyhedra”, Graphs Comb., 32:5 (2016), 1789–1803 | DOI | MR | Zbl

[7] Shevchenko V. N., Zolotykh N. Yu., “Lower bounds for the complexity of learning half-spaces with membership queries”, Algorithmic Learning Theory, Proc. 9th Int. Conf. (Otzenhausen, Germany, Oct. 8–10, 1998), Lect. Notes Comput. Sci., 1501, Springer, Berlin, 1998, 61–71 | DOI | MR | Zbl

[8] Trainin J., “An elementary proof of Pick's theorem”, Math. Gaz., 91 (2007), 536–540 | DOI

[9] Zamaraeva E., On teaching sets of $k$-threshold functions, Cornell Univ. Libr., 2015, arXiv: 1502.04340