On teaching sets for $2$-threshold functions of two variables
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 31-55
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider $k$-threshold functions of $n$ variables, i.e. the functions representable as the conjunction of $k$ threshold functions. For $n=2$, $k=2$, we give upper bounds for the cardinality of the minimal teaching set depending on the various properties of the function. Illustr. 6, bibliogr. 9.
Keywords:
machine learning, threshold function, teaching dimension, teaching set.
@article{DA_2017_24_1_a2,
author = {E. M. Zamaraeva},
title = {On teaching sets for $2$-threshold functions of two variables},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {31--55},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/}
}
E. M. Zamaraeva. On teaching sets for $2$-threshold functions of two variables. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 31-55. http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/