On teaching sets for $2$-threshold functions of two variables
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 31-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $k$-threshold functions of $n$ variables, i.e. the functions representable as the conjunction of $k$ threshold functions. For $n=2$, $k=2$, we give upper bounds for the cardinality of the minimal teaching set depending on the various properties of the function. Illustr. 6, bibliogr. 9.
Keywords: machine learning, threshold function, teaching dimension, teaching set.
@article{DA_2017_24_1_a2,
     author = {E. M. Zamaraeva},
     title = {On teaching sets for $2$-threshold functions of two variables},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {31--55},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/}
}
TY  - JOUR
AU  - E. M. Zamaraeva
TI  - On teaching sets for $2$-threshold functions of two variables
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 31
EP  - 55
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/
LA  - ru
ID  - DA_2017_24_1_a2
ER  - 
%0 Journal Article
%A E. M. Zamaraeva
%T On teaching sets for $2$-threshold functions of two variables
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 31-55
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/
%G ru
%F DA_2017_24_1_a2
E. M. Zamaraeva. On teaching sets for $2$-threshold functions of two variables. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 31-55. http://geodesic.mathdoc.fr/item/DA_2017_24_1_a2/