On list incidentor $(k,l)$-colorings
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proper incidentor coloring is called a $(k,l)$-coloring if the difference between the colors of the final and initial incidentors ranges between $k$ and $l$. In the list variant, the extra restriction is added: The color of each incidentor must belong to the set of admissible colors of the arc. In order to make this restriction reasonable we assume that the set of admissible colors for each arc is an integer interval. The minimum length of the interval that guarantees the existence of a list incidentor $(k,l)$-coloring is called a list incidentor $(k,l)$-chromatic number. Some bounds for the list incidentor $(k,l)$-chromatic number are proved for multigraphs of degree $2$ and $4$. Bibliogr. 13.
Keywords: list coloring, incidentor, $(k,l)$-coloring.
@article{DA_2017_24_1_a1,
     author = {E. I. Vasilyeva and A. V. Pyatkin},
     title = {On list incidentor $(k,l)$-colorings},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_1_a1/}
}
TY  - JOUR
AU  - E. I. Vasilyeva
AU  - A. V. Pyatkin
TI  - On list incidentor $(k,l)$-colorings
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 21
EP  - 30
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_1_a1/
LA  - ru
ID  - DA_2017_24_1_a1
ER  - 
%0 Journal Article
%A E. I. Vasilyeva
%A A. V. Pyatkin
%T On list incidentor $(k,l)$-colorings
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 21-30
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_1_a1/
%G ru
%F DA_2017_24_1_a1
E. I. Vasilyeva; A. V. Pyatkin. On list incidentor $(k,l)$-colorings. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 1, pp. 21-30. http://geodesic.mathdoc.fr/item/DA_2017_24_1_a1/

[1] V. G. Vizing, “Incidentor coloring of multigraphs in prescribed colors”, Diskretn. Anal. Issled. Oper., Ser. 1, 7:1 (2000), 32–39 (Russian)

[2] V. G. Vizing, “A bipartite interpretation of a directed multigraph in problems of the coloring of incidentors”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:1 (2002), 27–41 (Russian)

[3] V. G. Vizing, “Strict coloring of incidentors in undirected multigraphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005), 48–53 (Russian) | Zbl

[4] V. G. Vizing, “On the $(p,q)$-coloring of incidentors of an undirected multigraph”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:4 (2005), 23–39 (Russian) | Zbl

[5] V. G. Vizing, L. S. Mel'nikov, A. V. Pyatkin, “On the $(k,l)$-coloring of incidentors”, Diskretn. Anal. Issled. Oper., Ser. 1, 7:4 (2000), 29–37 (Russian)

[6] V. G. Vizing, A. V. Pyatkin, “Incidentor coloring of multigraphs”, Topics in graph theory (Urbana, USA, 2013), ed. R. I. Tyshkevich, 2013, 197–209 (Russian) (Accessed Mar. 3, 2015) http://www.math.uiuc.edu/k̃ostochk/

[7] A. V. Pyatkin, “Some problems for optimizing the routing of messages in a local communication network”, Operations Research and Discrete Analysis, Math. Appl., 391, ed. A. D. Korshunov, Kluwer Acad. Publ., Dordrecht, 1997, 227–232 | Zbl

[8] A. V. Pyatkin, “$(k,l)$-Coloring of incidentors of cubic multigraphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 9:1 (2002), 49–53 (Russian)

[9] A. V. Pyatkin, “Some upper bounds for the incidentor $(k,l)$-chromatic number”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:2 (2003), 66–78 (Russian) | Zbl

[10] A. V. Pyatkin, “Upper and lower bounds for the incidentor $(k,l)$-chromatic number”, Diskretn. Anal. Issled. Oper., Ser. 1, 11:1 (2004), 93–102 (Russian) | Zbl

[11] A. V. Pyatkin, “On $(1,1)$-coloring of incidentors of multigraphs of degree $4$”, Diskretn. Anal. Issled. Oper., Ser. 1, 11:3 (2004), 59–62 (Russian)

[12] A. V. Pyatkin, “On list incidentor coloring of a multigraph of degree $3$”, J. Appl. Ind. Math., 2:4 (2008), 560–565 | DOI | MR | Zbl

[13] Borodin O. V., Kostochka A. V., Woodall D. R., “List edge and list total colorings of multigraphs”, J. Comb. Theory, Ser. B, 71:2 (1997), 184–204 | DOI | MR | Zbl