Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_4_a3, author = {V. V. Shenmaier}, title = {Solving some vector subset problems by {Voronoi} diagrams}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {102--115}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_4_a3/} }
V. V. Shenmaier. Solving some vector subset problems by Voronoi diagrams. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 4, pp. 102-115. http://geodesic.mathdoc.fr/item/DA_2016_23_4_a3/
[1] A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, A. V. Pyatkin, “The problem of finding a subset of vectors with the maximum total weight”, J. Appl. Ind. Math., 2:1 (2008), 32–38 | DOI | MR | Zbl
[2] A. E. Baburin, A. V. Pyatkin, “Polynomial algorithms for solving the vector sum problem”, J. Appl. Ind. Math., 1:3 (2007), 268–272 | DOI | MR | MR | Zbl
[3] E. Kh. Gimadi, A. V. Kel'manov, M. A. Kel'manova, S. A. Khamidullin, “A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence”, Pattern Recognit. Image Anal., 18:1 (2008), 30–42 | DOI | MR | MR | Zbl
[4] E. Kh. Gimadi, A. V. Pyatkin, I. A. Rykov, “On polynomial solvability of some problems of a vector subset choice in a Euclidean space of fixed dimension”, J. Appl. Ind. Math., 4:1 (2010), 48–53 | DOI | MR | Zbl
[5] A. V. Dolgushev, A. V. Kel'manov, “An approximation algorithm for solving a problem of cluster analysis”, J. Appl. Ind. Math., 5:4 (2011), 551–558 | DOI | MR | Zbl
[6] A. V. Dolgushev, A. V. Kel'manov, V. V. Shenmaier, “Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters”, Tr. Inst. Mat. Mekh., 21, no. 3, 2015, 100–109 | MR
[7] A. V. Kel'manov, A. V. Pyatkin, “On a version of the problem of choosing a vector subset”, J. Appl. Ind. Math., 3:4 (2009), 447–455 | DOI | MR | Zbl
[8] A. V. Kel'manov, A. V. Pyatkin, “NP-completeness of some problems of choosing a vector subset”, J. Appl. Ind. Math., 5:3 (2011), 352–357 | DOI | MR | Zbl
[9] A. V. Kel'manov, S. M. Romanchenko, “An FPTAS for a vector subset search problem”, J. Appl. Ind. Math., 8:3 (2014), 329–336 | DOI | MR | Zbl
[10] V. V. Shenmaier, “An approximation scheme for a problem of search for a vector subset”, J. Appl. Ind. Math., 6:3 (2012), 381–386 | DOI | MR | Zbl
[11] Aggarwal A., Imai H., Katoh N., Suri S., “Finding $k$ points with minimum diameter and related problems”, J. Algorithms, 12:1 (1991), 38–56 | DOI | MR | Zbl
[12] Aronov B., Har-Peled S., “On approximating the depth and related problems”, SIAM J. Computing, 38:3 (2008), 899–921 | DOI | MR | Zbl
[13] Aurenhammer F., Klein R., “Voronoi diagrams”, Handbook of computational geometry, eds. J.-R. Sack, J. Urrutia, Elsevier, Amsterdam, 2000, 201–290 | DOI | MR
[14] Edelsbrunner H., O'Rourke J., Seidel R., “Constructing arrangements of lines and hyperplanes with applications”, SIAM J. Computing, 15:2 (1986), 341–363 | DOI | MR | Zbl
[15] Johnson D. S., Preparata F. P., “The densest hemisphere problem”, Theor. Comput. Sci., 6:1 (1978), 93–107 | DOI | MR | Zbl
[16] Shamos M. I., Hoey D., “Closest-point problems”, Proc. 16th IEEE Annu. Symp. Found. Comput. Sci. (Berkeley, Oct. 13–15, 1975), IEEE, Piscaway, 1975, 151–162 | MR