Permanents of multidimensional matrices: properties and applications
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 4, pp. 35-101

Voir la notice de l'article provenant de la source Math-Net.Ru

The permanent of a multidimensional matrix is the sum of the products of entries over all diagonals. In this survey, we consider the basic properties of the multidimensional permanent, sufficient conditions for its positivity, available upper bounds, and the specifics of the permanents of polystochastic matrices. We prove that the number of various combinatorial objects can be expressed via multidimensional permanents. Special attention is paid to the number of $1$-factors of uniform hypergraphs and the number of transversals in Latin hypercubes. Tabl. 1, bibliogr. 63.
Mots-clés : permanent, multidimensional matrix, transversal in a Latin hypercube
Keywords: stochastic matrix, polystochastic matrix, $1$-factor of a uniform hypergraph.
@article{DA_2016_23_4_a2,
     author = {A. A. Taranenko},
     title = {Permanents of multidimensional matrices: properties and applications},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {35--101},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_4_a2/}
}
TY  - JOUR
AU  - A. A. Taranenko
TI  - Permanents of multidimensional matrices: properties and applications
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 35
EP  - 101
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_4_a2/
LA  - ru
ID  - DA_2016_23_4_a2
ER  - 
%0 Journal Article
%A A. A. Taranenko
%T Permanents of multidimensional matrices: properties and applications
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 35-101
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_4_a2/
%G ru
%F DA_2016_23_4_a2
A. A. Taranenko. Permanents of multidimensional matrices: properties and applications. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 4, pp. 35-101. http://geodesic.mathdoc.fr/item/DA_2016_23_4_a2/