On full-rank perfect codes over finite fields
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 107-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a construction of full-rank $q$-ary $1$-perfect codes over finite fields. This is a generalization of the construction of full-rank binary $1$-perfect codes by Etzion and Vardy (1994). The properties of the $i$-components of q-ary Hamming codes are investigated and the construction of full-rank $q$-ary $1$-perfect codes is based on these properties. The switching construction of $1$-perfect codes is generalized for the $q$-ary case. We propose a generalization of the notion of $i$-component of a $1$-perfect code and introduce the concept of an $(i,\sigma)$-component of $q$-ary $1$-perfect codes. We also present a generalization of the Lindström–Schönheim construction of $q$-ary $1$-perfect codes and provide a lower bound for the number of pairwise distinct $q$-ary $1$-perfect codes of length $n$. Bibliogr. 16.
Keywords: Hamming code, nonlinear perfect code, full-rank code, $i$-component.
@article{DA_2016_23_3_a6,
     author = {A. M. Romanov},
     title = {On full-rank perfect codes over finite fields},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {107--123},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a6/}
}
TY  - JOUR
AU  - A. M. Romanov
TI  - On full-rank perfect codes over finite fields
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 107
EP  - 123
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_3_a6/
LA  - ru
ID  - DA_2016_23_3_a6
ER  - 
%0 Journal Article
%A A. M. Romanov
%T On full-rank perfect codes over finite fields
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 107-123
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_3_a6/
%G ru
%F DA_2016_23_3_a6
A. M. Romanov. On full-rank perfect codes over finite fields. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 107-123. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a6/

[1] Yu. L. Vasil'ev, “On nongroup close-packed codes”, Problems of Cybernetics, 8, ed. A. A. Lyapunov, Fizmatgiz, Moscow, 1962, 375–378 | Zbl

[2] A. M. Romanov, “On construction of nonlinear perfect binary codes by inversion of symbols”, Diskretn. Anal. Issled. Oper. Ser. 1, 4:1 (1997), 46–52 | MR | Zbl

[3] A. M. Romanov, “On partitions of $q$-ary Hamming codes into disjoint components”, Diskretn. Anal. Issled. Oper. Ser. 1, 11:3 (2004), 80–87 | MR | Zbl

[4] A. M. Romanov, “A survey of methods for constructing nonlinear perfect binary codes”, J. Appl. Ind. Math., 2:2 (2008), 252–269 | DOI | MR | Zbl

[5] A. M. Romanov, “On admissible families of components of Hamming codes”, J. Appl. Ind. Math., 6:3 (2012), 355–359 | DOI | MR | Zbl

[6] Avgustinovich S. V., Krotov D. S., “Embedding in a perfect code”, J. Comb. Des., 17:5 (2009), 419–423 | DOI | MR | Zbl

[7] Etzion T., Vardy A., “Perfect binary codes: Constructions, properties, and enumeration”, IEEE Trans. Inf. Theory, 40:3 (1994), 754–763 | DOI | MR | Zbl

[8] Etzion T., “Nonequivalent $q$-ary perfect codes”, SIAM J. Discrete Mat., 9:3 (1996), 413–423 | DOI | MR | Zbl

[9] Heden O., Krotov D., “On the structure of non-full-rank perfect $q$-ary codes”, Adv. Math. Comb., 5:2 (2011), 149–156 | DOI | MR | Zbl

[10] Lindström B., “On group and nongroup perfect codes in $q$ symbols”, Math. Scand., 25:149–158 (1969) | MR | Zbl

[11] Los' A. V., “Construction of perfect $q$-ary codes”, Proc. 9th Int. Workshop “Algebraic and Combinatorial Coding Theory” (Kranevo, Bulgaria, June 19–25, 2004), Acad., Sofia, 2004, 272–276

[12] Östergård P. R. J., Pottonen O., Phelps K. T., “The perfect binary one-error-correcting codes of length 15: Part II – Properties”, IEEE Trans. Inform. Theory, 56:6 (2010), 2571–2582 | DOI | MR

[13] Phelps K. T., Villanueva M., “Ranks of $q$-ary 1-perfect codes”, Des. Codes Cryptogr., 27:1–2 (2002), 139–144 | DOI | MR | Zbl

[14] Phelps K. T., Rifà J., Villanueva M., “Kernels and $p$-kernels of $p^r$-ary 1-perfect codes”, Des. Codes Cryptogr., 37:2 (2005), 243–261 | DOI | MR | Zbl

[15] Romanov A. M., “Hamiltonicity of minimum distance graphs of 1-perfect codes”, Electron. J. Comb., 19:1 (2012), P65, 6 pp. | MR | Zbl

[16] Schönheim J., “On linear and nonlinear single-error-correcting $q$-nary perfect codes”, Inform. Control, 12 (1968), 23–26 | DOI | MR | Zbl