On full-rank perfect codes over finite fields
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 107-123

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a construction of full-rank $q$-ary $1$-perfect codes over finite fields. This is a generalization of the construction of full-rank binary $1$-perfect codes by Etzion and Vardy (1994). The properties of the $i$-components of q-ary Hamming codes are investigated and the construction of full-rank $q$-ary $1$-perfect codes is based on these properties. The switching construction of $1$-perfect codes is generalized for the $q$-ary case. We propose a generalization of the notion of $i$-component of a $1$-perfect code and introduce the concept of an $(i,\sigma)$-component of $q$-ary $1$-perfect codes. We also present a generalization of the Lindström–Schönheim construction of $q$-ary $1$-perfect codes and provide a lower bound for the number of pairwise distinct $q$-ary $1$-perfect codes of length $n$. Bibliogr. 16.
Keywords: Hamming code, nonlinear perfect code, full-rank code, $i$-component.
@article{DA_2016_23_3_a6,
     author = {A. M. Romanov},
     title = {On full-rank perfect codes over finite fields},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {107--123},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a6/}
}
TY  - JOUR
AU  - A. M. Romanov
TI  - On full-rank perfect codes over finite fields
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 107
EP  - 123
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_3_a6/
LA  - ru
ID  - DA_2016_23_3_a6
ER  - 
%0 Journal Article
%A A. M. Romanov
%T On full-rank perfect codes over finite fields
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 107-123
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_3_a6/
%G ru
%F DA_2016_23_3_a6
A. M. Romanov. On full-rank perfect codes over finite fields. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 107-123. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a6/