Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_3_a5, author = {A. K. Oblaukhov}, title = {Metric complements to subspaces in the {Boolean} cube}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {93--106}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a5/} }
A. K. Oblaukhov. Metric complements to subspaces in the Boolean cube. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 93-106. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a5/
[1] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Math. Libr., 16, North-Holland, Amsterdam, 1977 | Zbl
[2] Carlet C., “Lower bounds on the higher order nonlinearities of Boolean functions and their applications to the inverse function”, Proc. IEEE Inf. Theory Workshop (Porto, May 5–9, 2008), IEEE, Piscataway, 2008, 333–337
[3] Kavut S., Maitra S., Yucel M. D., “Search for Boolean functions with excellent profiles in the rotation symmetric class”, IEEE Trans. Inf. Theory, 53:5 (2007), 1743–1751 | DOI | MR | Zbl
[4] Maitra S., Sarkar P., “Maximum nonlinearity of symmetric Boolean functions on odd number of variables”, IEEE Trans. Inf. Theory, 48:9 (2002), 2626–2630 | DOI | MR | Zbl
[5] Neumaier A., “Completely regular codes”, Discrete Math., 106 (1992), 353–360 | DOI | MR | Zbl
[6] Rothaus O. S., “On “bent” functions”, J. Comb. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[7] Sun G., Wu C., “The lower bound on the second-order nonlinearity of a class of Boolean functions with high nonlinearity”, Appl. Algebra Eng. Commun. Comput., 22:1 (2011), 37–45 | DOI | MR | Zbl
[8] Tokareva N. N., “Duality between bent functions and affine functions”, Discrete Math., 312:3 (2012), 666–670 | DOI | MR | Zbl
[9] Tokareva N. N., Bent functions: results and applications to cryptography, Acad. Press, San Diego, 2015, 220 pp. | MR