Metric complements to subspaces in the Boolean cube
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 93-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the metric complements to sets in the Boolean cube; i.e. the subsets maximally distant from given subset. We obtain the general form for the metric complement of a linear subspace and some more exact description for the class of subspaces with basis of a special form. It is proved that the completely regular codes (including perfect and uniformly packed) are metrically regular. Bibliogr. 9.
Keywords: subspace, metrically regular set, metric complement, completely regular code, bent-function.
@article{DA_2016_23_3_a5,
     author = {A. K. Oblaukhov},
     title = {Metric complements to subspaces in the {Boolean} cube},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {93--106},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a5/}
}
TY  - JOUR
AU  - A. K. Oblaukhov
TI  - Metric complements to subspaces in the Boolean cube
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 93
EP  - 106
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_3_a5/
LA  - ru
ID  - DA_2016_23_3_a5
ER  - 
%0 Journal Article
%A A. K. Oblaukhov
%T Metric complements to subspaces in the Boolean cube
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 93-106
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_3_a5/
%G ru
%F DA_2016_23_3_a5
A. K. Oblaukhov. Metric complements to subspaces in the Boolean cube. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 93-106. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a5/

[1] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Math. Libr., 16, North-Holland, Amsterdam, 1977 | Zbl

[2] Carlet C., “Lower bounds on the higher order nonlinearities of Boolean functions and their applications to the inverse function”, Proc. IEEE Inf. Theory Workshop (Porto, May 5–9, 2008), IEEE, Piscataway, 2008, 333–337

[3] Kavut S., Maitra S., Yucel M. D., “Search for Boolean functions with excellent profiles in the rotation symmetric class”, IEEE Trans. Inf. Theory, 53:5 (2007), 1743–1751 | DOI | MR | Zbl

[4] Maitra S., Sarkar P., “Maximum nonlinearity of symmetric Boolean functions on odd number of variables”, IEEE Trans. Inf. Theory, 48:9 (2002), 2626–2630 | DOI | MR | Zbl

[5] Neumaier A., “Completely regular codes”, Discrete Math., 106 (1992), 353–360 | DOI | MR | Zbl

[6] Rothaus O. S., “On “bent” functions”, J. Comb. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[7] Sun G., Wu C., “The lower bound on the second-order nonlinearity of a class of Boolean functions with high nonlinearity”, Appl. Algebra Eng. Commun. Comput., 22:1 (2011), 37–45 | DOI | MR | Zbl

[8] Tokareva N. N., “Duality between bent functions and affine functions”, Discrete Math., 312:3 (2012), 666–670 | DOI | MR | Zbl

[9] Tokareva N. N., Bent functions: results and applications to cryptography, Acad. Press, San Diego, 2015, 220 pp. | MR