Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_3_a3, author = {A. N. Maksimenko}, title = {Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {61--80}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a3/} }
TY - JOUR AU - A. N. Maksimenko TI - Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes JO - Diskretnyj analiz i issledovanie operacij PY - 2016 SP - 61 EP - 80 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2016_23_3_a3/ LA - ru ID - DA_2016_23_3_a3 ER -
%0 Journal Article %A A. N. Maksimenko %T Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes %J Diskretnyj analiz i issledovanie operacij %D 2016 %P 61-80 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2016_23_3_a3/ %G ru %F DA_2016_23_3_a3
A. N. Maksimenko. Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 61-80. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a3/
[1] V. A. Bondarenko, A. N. Maksimenko, Geometric Constructions and Complexity in Combinatorial Optimization, LKI, Moscow, 2008
[2] V. A. Bondarenko, A. V. Nikolaev, “Combinatorial and geometric properties of the Max-Cut and Min-Cut problems”, Dokl. Math., 88:2 (2013), 516–517 | DOI | DOI | MR | Zbl
[3] Deza M. M., M. Laurent, Geometry of Cuts and Metrics, Algorithms Comb., 15, Springer, Heidelberg, 1997 | MR | Zbl
[4] A. N. Maksimenko, “The common face of some 0/1-polytopes with NP-complete nonadjacency relation”, J. Math. Sci., 203:6 (2014), 823–832 | DOI | MR | Zbl
[5] A. N. Maksimenko, “Characteristics of complexity: Clique number of a polytope graph and rectangle covering number”, Model. Anal. Inf. Sist., 21:5 (2014), 116–130
[6] A. N. Maksimenko, “The simplest families of polytopes associated with NP-hard problems”, Dokl. Math., 91:1 (2015), 53–55 | DOI | DOI | MR | Zbl
[7] G. M. Ziegler, Lectures on Polytopes, Grad. Texts Math., 152, Springer, New York, 1995 | DOI | MR | Zbl
[8] Applegate D. L., Bixby R. M., Chvátal V., Cook W. J., The traveling salesman problem: a computational study, Princeton Univ. Press, Princeton, 2007, 608 pp. | MR
[9] Bogomolov Yu., Fiorini S., Maksimenko A., Pashkovich K., “Small extended formulations for cyclic polytopes”, Discrete Comput. Geom., 53:4 (2015), 809–816 | DOI | MR | Zbl
[10] Conforti M., Cornuéjols G., Zambelli G., “Extended formulations in combinatorial optimization”, Ann. Oper. Res., 204:1 (2013), 97–143 | DOI | MR | Zbl
[11] Dantzig G. B., Fulkerson D. R., Johnson S. M., “Solution of a large-scale traveling salesman problem”, Oper. Res., 2:4 (1954), 393–410 | MR
[12] Fiorini S., Kaibel V., Pashkovich K., Theis D. O., “Combinatorial bounds on nonnegative rank and extended formulations”, Discrete Math., 313:1 (2013), 67–83 | DOI | MR | Zbl
[13] Fiorini S., Massar S., Pokutta S., Tiwary H. R., de Wolf R., “Exponential lower bounds for polytopes in combinatorial optimization”, J. ACM, 62:2 (2015), 17:1–17:23 | DOI | MR
[14] Fiorini S., Rothvoß T., Tiwary H. R., “Extended formulations for polygons”, Discrete Comput. Geom., 48:13 (2012), 658–668 | DOI | MR | Zbl
[15] Grünbaum B., Convex polytopes, Springer-Verl., New York, 2003, 471 pp. | MR | Zbl
[16] Kaibel V., “Extended formulations in combinatorial optimization”, Optima, Math. Optim. Soc. Newsl., 85 (2011), 2–7
[17] Kaibel V., Pfetsch M. E., “Computing the face lattice of a polytope from its vertex-facet incidences”, Comput. Geom., 23:3 (2002), 281–290 | DOI | MR | Zbl
[18] Kaibel V., Weltge S., “A short proof that the extension complexity of the correlation polytope grows exponentially”, Discrete Comput. Geom., 53:2 (2015), 397–401 | DOI | MR | Zbl
[19] Padberg M. W., Rao M. R., “The travelling salesman problem and a class of polyhedra of diameter two”, Math. Program., 7 (1974), 32–45 | DOI | MR | Zbl
[20] Rothvoß T., “The matching polytope has exponential extension complexity”, Proc. 46th Annu. ACM Symp. Theory Comput. (New York, May 31 – June 3, 2014), ACM, New York, 2014, 263–272 | DOI | MR | Zbl
[21] Shannon C., “Communication theory of secrecy systems”, Bell System Techn. J., 28:4 (1949), 656–715 | DOI | MR | Zbl
[22] Yannakakis M., “Expressing combinatorial optimization problems by linear programs”, J. Comput. Syst. Sci., 43:3 (1991), 441–466 | DOI | MR | Zbl