Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 61-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the following question: Can combinatorial properties of polytopes help in finding an estimate for the complexity of the corresponding optimization problem? Sometimes, these key characteristics of complexity were the number of hyperfaces of the polytope, diameter and clique number of the graph of the polytope, the rectangle covering number of the vertex-facet incidence matrix, and some other characteristics. In this paper, we provide several families of polytopes for which the above-mentioned characteristics differ significantly from the real computational complexity of the corresponding optimization problems. In particular, we give two examples of discrete optimization problem whose polytopes are combinatorially equivalent and they have the same lengths of the binary representation of the coordinates of the polytope vertices. Nevertheless, the first problem is solvable in polynomial time, while the second problem has exponential complexity. Ill. 1, bibliogr. 22.
Keywords: NP-complex problem, combinatorial equivalence, graph of a polytope, graph clique number, extended formulation, cyclic polytope.
Mots-clés : vertex-facet incidence matrix
@article{DA_2016_23_3_a3,
     author = {A. N. Maksimenko},
     title = {Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {61--80},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a3/}
}
TY  - JOUR
AU  - A. N. Maksimenko
TI  - Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 61
EP  - 80
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_3_a3/
LA  - ru
ID  - DA_2016_23_3_a3
ER  - 
%0 Journal Article
%A A. N. Maksimenko
%T Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 61-80
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_3_a3/
%G ru
%F DA_2016_23_3_a3
A. N. Maksimenko. Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 61-80. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a3/

[1] V. A. Bondarenko, A. N. Maksimenko, Geometric Constructions and Complexity in Combinatorial Optimization, LKI, Moscow, 2008

[2] V. A. Bondarenko, A. V. Nikolaev, “Combinatorial and geometric properties of the Max-Cut and Min-Cut problems”, Dokl. Math., 88:2 (2013), 516–517 | DOI | DOI | MR | Zbl

[3] Deza M. M., M. Laurent, Geometry of Cuts and Metrics, Algorithms Comb., 15, Springer, Heidelberg, 1997 | MR | Zbl

[4] A. N. Maksimenko, “The common face of some 0/1-polytopes with NP-complete nonadjacency relation”, J. Math. Sci., 203:6 (2014), 823–832 | DOI | MR | Zbl

[5] A. N. Maksimenko, “Characteristics of complexity: Clique number of a polytope graph and rectangle covering number”, Model. Anal. Inf. Sist., 21:5 (2014), 116–130

[6] A. N. Maksimenko, “The simplest families of polytopes associated with NP-hard problems”, Dokl. Math., 91:1 (2015), 53–55 | DOI | DOI | MR | Zbl

[7] G. M. Ziegler, Lectures on Polytopes, Grad. Texts Math., 152, Springer, New York, 1995 | DOI | MR | Zbl

[8] Applegate D. L., Bixby R. M., Chvátal V., Cook W. J., The traveling salesman problem: a computational study, Princeton Univ. Press, Princeton, 2007, 608 pp. | MR

[9] Bogomolov Yu., Fiorini S., Maksimenko A., Pashkovich K., “Small extended formulations for cyclic polytopes”, Discrete Comput. Geom., 53:4 (2015), 809–816 | DOI | MR | Zbl

[10] Conforti M., Cornuéjols G., Zambelli G., “Extended formulations in combinatorial optimization”, Ann. Oper. Res., 204:1 (2013), 97–143 | DOI | MR | Zbl

[11] Dantzig G. B., Fulkerson D. R., Johnson S. M., “Solution of a large-scale traveling salesman problem”, Oper. Res., 2:4 (1954), 393–410 | MR

[12] Fiorini S., Kaibel V., Pashkovich K., Theis D. O., “Combinatorial bounds on nonnegative rank and extended formulations”, Discrete Math., 313:1 (2013), 67–83 | DOI | MR | Zbl

[13] Fiorini S., Massar S., Pokutta S., Tiwary H. R., de Wolf R., “Exponential lower bounds for polytopes in combinatorial optimization”, J. ACM, 62:2 (2015), 17:1–17:23 | DOI | MR

[14] Fiorini S., Rothvoß T., Tiwary H. R., “Extended formulations for polygons”, Discrete Comput. Geom., 48:13 (2012), 658–668 | DOI | MR | Zbl

[15] Grünbaum B., Convex polytopes, Springer-Verl., New York, 2003, 471 pp. | MR | Zbl

[16] Kaibel V., “Extended formulations in combinatorial optimization”, Optima, Math. Optim. Soc. Newsl., 85 (2011), 2–7

[17] Kaibel V., Pfetsch M. E., “Computing the face lattice of a polytope from its vertex-facet incidences”, Comput. Geom., 23:3 (2002), 281–290 | DOI | MR | Zbl

[18] Kaibel V., Weltge S., “A short proof that the extension complexity of the correlation polytope grows exponentially”, Discrete Comput. Geom., 53:2 (2015), 397–401 | DOI | MR | Zbl

[19] Padberg M. W., Rao M. R., “The travelling salesman problem and a class of polyhedra of diameter two”, Math. Program., 7 (1974), 32–45 | DOI | MR | Zbl

[20] Rothvoß T., “The matching polytope has exponential extension complexity”, Proc. 46th Annu. ACM Symp. Theory Comput. (New York, May 31 – June 3, 2014), ACM, New York, 2014, 263–272 | DOI | MR | Zbl

[21] Shannon C., “Communication theory of secrecy systems”, Bell System Techn. J., 28:4 (1949), 656–715 | DOI | MR | Zbl

[22] Yannakakis M., “Expressing combinatorial optimization problems by linear programs”, J. Comput. Syst. Sci., 43:3 (1991), 441–466 | DOI | MR | Zbl