Comparison of models of planning public-private partnership
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 35-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose two new mathematical formulation of the planning problem of public-private partnership. One of the models is bilevel and the other is one-level. The results that characterize the computational complexity of these models are shown. We develop some exact and approximate algorithms for solving these problems. A special model polygon is built to carry out a computational experiment. The polygon takes into account the specificity of the original information base. On the basis of the numerical results of the experiment, we compare the properties of optimal solutions in different models. This allows us to assess the adequacy of the underlying assumptions of the models with the current state of affairs in the field of project management of public-private partnership. Ill. 13, bibliogr. 16.
Keywords: public-private partnership, bilevel problem, approximation hierarchy, NPO-hard problem, class $\Sigma^P_2O$, hybrid algorithm, local search.
@article{DA_2016_23_3_a2,
     author = {S. M. Lavlinskii and A. A. Panin and A. V. Plyasunov},
     title = {Comparison of models of planning public-private partnership},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {35--60},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a2/}
}
TY  - JOUR
AU  - S. M. Lavlinskii
AU  - A. A. Panin
AU  - A. V. Plyasunov
TI  - Comparison of models of planning public-private partnership
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 35
EP  - 60
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_3_a2/
LA  - ru
ID  - DA_2016_23_3_a2
ER  - 
%0 Journal Article
%A S. M. Lavlinskii
%A A. A. Panin
%A A. V. Plyasunov
%T Comparison of models of planning public-private partnership
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 35-60
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_3_a2/
%G ru
%F DA_2016_23_3_a2
S. M. Lavlinskii; A. A. Panin; A. V. Plyasunov. Comparison of models of planning public-private partnership. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 35-60. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a2/

[1] I. P. Glazyrina, S. M. Lavlinskii, I. A. Kalgina, “Public and private partnership in the mineral resources sector of Zabaikalskii krai: Problems and perspectives”, Geogr. Prir. Resur., 2014, no. 4, 89–95

[2] I. A. Davydov, “Tabu search for the discrete $(r|p)$-centroid problem”, Diskretn. Anal. Issled. Oper., 19:2 (2012), 19–40 | MR | Zbl

[3] A. I. Kibzun, A. V. Naumov, S. V. Ivanov, “A bilevel optimization problem for railway transport hub planning”, Large-Scale Systems Control, 38, Inst. Probl. Upr., Moscow, 2012, 140–160

[4] Yu. A. Kochetov, “Computational bounds for local search in combinatorial optimization”, Comput. Math. Math. Phys., 48:5 (2008), 747–763 | DOI | MR | Zbl

[5] S. M. Lavlinskii, Indicator-planning models for social and economy development of a resource region, Izd. SO RAN, Novosibirsk, 2008

[6] S. M. Lavlinskii, “Public and private partnership in a resource territory: Ecological problems, models, and perspectives”, Probl. Progn., 2010, no. 1, 99–111

[7] S. M. Lavlinskii, I. A. Kalgina, “Methods to estimate public and private partnership in the mineral and raw material sector of Zabaikalskii krai”, Vestn. ZabGU, 2012, no. 9, 96–102

[8] S. M. Lavlinskii, A. A. Panin, A. V. Plyasunov, “A bilevel planning model for public-private partnership”, Autom. Remote Control, 76:11 (2015), 1976–1987 | DOI | MR | Zbl

[9] A. A. Panin, M. G. Pashchenko, A. V. Plyasunov, “Bilevel competitive facility location and pricing problems”, Autom. Remote Control, 75:4 (2014), 715–727 | DOI | MR | Zbl

[10] E. O. Rapoport, “On some problems of ground rent modeling in a mixed economy”, Sib. Zh. Ind. Mat., 14:2 (2011), 95–105 | MR | Zbl

[11] Audet C., Savard G., Zghal W., “New branch-and-cut algorithm for bilevel linear programming”, J. Optim. Theory Appl., 134:2 (2007), 353–370 | DOI | MR | Zbl

[12] Ausiello G., Crescenzi P., Gambosi G., Kann V., Marchetti-Spaccamela A., Protasi M., Complexity and approximation: combinatorial optimization problems and their aproximability properties, Springer-Verl., Berlin–Heidelberg, 1999, 524 pp. | MR

[13] Davydov I., Kochetov Yu., Carrizosa E., “VNS heuristic for the ($r|p$)-centroid problem on the plane”, Electron. Notes Discrete Math., 39 (2012), 5–12 | DOI | MR | Zbl

[14] Davydov I. A., Kochetov Yu. V., Plyasunov A. V., “On the complexity of the ($r|p$)-centroid problem in the plane”, TOP, 22:2 (2014), 614–623 | DOI | MR | Zbl

[15] Dempe S. J., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 320 pp. | MR | Zbl

[16] DeNegre S. T., Ralphs T. K., “A branch-and-cut algorithm for integer bilevel linear programs”, Operations research and cyber-infrastructure, Oper. Res./Comput. Sci. Interfaces, 47, Kluwer Acad. Publ., Dordrecht, 2009, 65–78