Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_3_a2, author = {S. M. Lavlinskii and A. A. Panin and A. V. Plyasunov}, title = {Comparison of models of planning public-private partnership}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {35--60}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a2/} }
TY - JOUR AU - S. M. Lavlinskii AU - A. A. Panin AU - A. V. Plyasunov TI - Comparison of models of planning public-private partnership JO - Diskretnyj analiz i issledovanie operacij PY - 2016 SP - 35 EP - 60 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2016_23_3_a2/ LA - ru ID - DA_2016_23_3_a2 ER -
S. M. Lavlinskii; A. A. Panin; A. V. Plyasunov. Comparison of models of planning public-private partnership. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 35-60. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a2/
[1] I. P. Glazyrina, S. M. Lavlinskii, I. A. Kalgina, “Public and private partnership in the mineral resources sector of Zabaikalskii krai: Problems and perspectives”, Geogr. Prir. Resur., 2014, no. 4, 89–95
[2] I. A. Davydov, “Tabu search for the discrete $(r|p)$-centroid problem”, Diskretn. Anal. Issled. Oper., 19:2 (2012), 19–40 | MR | Zbl
[3] A. I. Kibzun, A. V. Naumov, S. V. Ivanov, “A bilevel optimization problem for railway transport hub planning”, Large-Scale Systems Control, 38, Inst. Probl. Upr., Moscow, 2012, 140–160
[4] Yu. A. Kochetov, “Computational bounds for local search in combinatorial optimization”, Comput. Math. Math. Phys., 48:5 (2008), 747–763 | DOI | MR | Zbl
[5] S. M. Lavlinskii, Indicator-planning models for social and economy development of a resource region, Izd. SO RAN, Novosibirsk, 2008
[6] S. M. Lavlinskii, “Public and private partnership in a resource territory: Ecological problems, models, and perspectives”, Probl. Progn., 2010, no. 1, 99–111
[7] S. M. Lavlinskii, I. A. Kalgina, “Methods to estimate public and private partnership in the mineral and raw material sector of Zabaikalskii krai”, Vestn. ZabGU, 2012, no. 9, 96–102
[8] S. M. Lavlinskii, A. A. Panin, A. V. Plyasunov, “A bilevel planning model for public-private partnership”, Autom. Remote Control, 76:11 (2015), 1976–1987 | DOI | MR | Zbl
[9] A. A. Panin, M. G. Pashchenko, A. V. Plyasunov, “Bilevel competitive facility location and pricing problems”, Autom. Remote Control, 75:4 (2014), 715–727 | DOI | MR | Zbl
[10] E. O. Rapoport, “On some problems of ground rent modeling in a mixed economy”, Sib. Zh. Ind. Mat., 14:2 (2011), 95–105 | MR | Zbl
[11] Audet C., Savard G., Zghal W., “New branch-and-cut algorithm for bilevel linear programming”, J. Optim. Theory Appl., 134:2 (2007), 353–370 | DOI | MR | Zbl
[12] Ausiello G., Crescenzi P., Gambosi G., Kann V., Marchetti-Spaccamela A., Protasi M., Complexity and approximation: combinatorial optimization problems and their aproximability properties, Springer-Verl., Berlin–Heidelberg, 1999, 524 pp. | MR
[13] Davydov I., Kochetov Yu., Carrizosa E., “VNS heuristic for the ($r|p$)-centroid problem on the plane”, Electron. Notes Discrete Math., 39 (2012), 5–12 | DOI | MR | Zbl
[14] Davydov I. A., Kochetov Yu. V., Plyasunov A. V., “On the complexity of the ($r|p$)-centroid problem in the plane”, TOP, 22:2 (2014), 614–623 | DOI | MR | Zbl
[15] Dempe S. J., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 320 pp. | MR | Zbl
[16] DeNegre S. T., Ralphs T. K., “A branch-and-cut algorithm for integer bilevel linear programs”, Operations research and cyber-infrastructure, Oper. Res./Comput. Sci. Interfaces, 47, Kluwer Acad. Publ., Dordrecht, 2009, 65–78