Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_3_a1, author = {A. V. Kel'manov and A. V. Motkova}, title = {Exact pseudopolinomial algorithms for a~balanced $2$-clustering problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {21--34}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a1/} }
TY - JOUR AU - A. V. Kel'manov AU - A. V. Motkova TI - Exact pseudopolinomial algorithms for a~balanced $2$-clustering problem JO - Diskretnyj analiz i issledovanie operacij PY - 2016 SP - 21 EP - 34 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2016_23_3_a1/ LA - ru ID - DA_2016_23_3_a1 ER -
A. V. Kel'manov; A. V. Motkova. Exact pseudopolinomial algorithms for a~balanced $2$-clustering problem. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 21-34. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a1/
[1] A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, A. V. Pyatkin, “The problem of finding a subset of vectors with the maximum total weight”, J. Appl. Ind. Math., 2:1 (2008), 32–38 | DOI | MR | Zbl
[2] N. Wirth, Algorithms + Data Structures = Programs, Prentice Hall, Upper Saddle River, USA, 1976 | MR | Zbl
[3] E. Kh. Gimadi, Yu. V. Glazkov, I. A. Rykov, “On two problems of choosing some subset of vectors with integer coordinates that has maximum norm of the sum of elements in Euclidean space”, J. Appl. Ind. Math., 3:3 (2009), 343–352 | DOI | MR | Zbl
[4] E. Kh. Gimadi, A. V. Kel'manov, M. A. Kel'manova, S. A. Khamidullin, “A posteriori detecting a quasiperiodic fragment with a given number of repetitions in a numerical sequence”, Sib. Zh. Ind. Mat., 9:1 (2006), 55–74 | MR | Zbl
[5] A. V. Dolgushev, A. V. Kel'manov, “An approximation algorithm for solving a problem of cluster analysis”, J. Appl. Ind. Math., 5:4 (2011), 551–558 | DOI | MR | Zbl
[6] A. V. Dolgushev, A. V. Kel'manov, V. V. Shenmaier, “Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters”, Tr. Inst. Mat. Mekh., 21, no. 3, 2015, 100–109 | MR
[7] A. V. Kel'manov, A. V. Pyatkin, “NP-hardness of some quadratic Euclidean 2-clustering problems”, Dokl. Math., 92:2 (2015), 634–637 | DOI | DOI | MR | Zbl
[8] A. V. Kel'manov, A. V. Pyatkin, “On the complexity of some quadratic Euclidean 2-clustering problems”, Comput. Math. Math. Phys., 56:3 (2016), 491–497 | DOI | DOI | MR | Zbl
[9] A. V. Kel'manov, S. M. Romanchenko, “Pseudopolynomial algorithms for certain computationally hard vector subset and cluster analysis problems”, Autom. Remote Control, 73:2 (2012), 349–354 | DOI | MR | Zbl
[10] A. V. Kel'manov, S. M. Romanchenko, “An FPTAS for a vector subset search problem”, J. Appl. Ind. Math., 8:3 (2014), 329–336 | DOI | MR | Zbl
[11] A. V. Kel'manov, V. I. Khandeev, “A 2-approximation polynomial algorithm for a clustering problem”, J. Appl. Ind. Math., 7:4 (2013), 515–521 | DOI | MR | Zbl
[12] A. V. Kel'manov, V. I. Khandeev, “A randomized algorithm for two-cluster partition of a set of vectors”, Comput. Math. Math. Phys., 55:2 (2015), 330–339 | DOI | DOI | MR | Zbl
[13] A. V. Kel'manov, V. I. Khandeev, “An exact pseudopolynomial algorithm for a problem of the two-cluster partitioning of a set of vectors”, J. Appl. Ind. Math., 9:4 (2015), 497–502 | DOI | DOI | MR | Zbl
[14] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Mach. Learn., 75:2 (2009), 245–248 | DOI
[15] Brucker P., “On the complexity of clustering problems”, Optimization and Operations Research, Proc. Workshop Held Univ. Bonn (Bonn, Germany, Oct. 2–8, 1977), Lect. Notes Econom. Math. Systems, 157, Springer-Verl., Heidelberg, 1978, 45–54 | DOI | MR
[16] De la Vega W. F., Karpinski M., Kenyon C., Rabani Y., Polynomial time approximation schemes for metric min-sum clustering, Electron. Colloq. Comput. Complexity (ECCC), Report No. 25, Hasso-Plattner-Inst. Softwaresystemtechnik, Potsdam, 2002
[17] De la Vega W. F., Kenyon C., “A randomized approximation scheme for metric Max-Cut”, J. Comput. Syst. Sci., 63 (2001), 531–541 | DOI | MR | Zbl
[18] Fisher R. A., Statistical methods and scientific inference, Hafner Press, New York, 1959, 350 pp. | MR
[19] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, Freeman, San Francisco, 1979, 314 pp. ; M. Geri, D. Dzhonson, Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR | Zbl | MR
[20] Gimadi E. Kh., Kel'manov A. V., Kel'manova M. A., Khamidullin S. A., “A posteriori detecting a quasiperiodic fragment in a numerical sequence”, Pattern Recognit. Image Anal., 18:1 (2008), 30–42 | DOI | MR
[21] Hasegawa S., Imai H., Inaba M., Katoh N., Nakano J., “Efficient algorithms for variance-based $k$-clustering”, Proc. 1st Pac. Conf. Comput. Graphics Appl. (Seoul, Korea, Aug. 30 – Sept. 2, 1993), v. 1, World Scientific, River Edge, NJ, 1993, 75–89
[22] Inaba M., Katoh N., Imai H., “Applications of weighted Voronoi diagrams and randomization to variance-based $k$-clustering”, Proc. 10th Symp. Comput. Geom. (Stony Brook, NY, USA, June 6–8, 1994), ACM, New York, 1994, 332–339
[23] Rao M., “Cluster analysis and mathematical programming”, J. Amer. Stat. Assoc., 66 (1971), 622–626 | DOI | Zbl
[24] Sahni S., Gonzalez T., “$P$-complete approximation problems”, J. ACM, 23 (1976), 555–566 | DOI | MR