Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_2_a1, author = {A. V. Kel'manov and S. A. Khamidullin and V. I. Khandeev}, title = {Fully polynomial-time approximation scheme for a~sequence $2$-clustering problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {21--40}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_2_a1/} }
TY - JOUR AU - A. V. Kel'manov AU - S. A. Khamidullin AU - V. I. Khandeev TI - Fully polynomial-time approximation scheme for a~sequence $2$-clustering problem JO - Diskretnyj analiz i issledovanie operacij PY - 2016 SP - 21 EP - 40 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2016_23_2_a1/ LA - ru ID - DA_2016_23_2_a1 ER -
%0 Journal Article %A A. V. Kel'manov %A S. A. Khamidullin %A V. I. Khandeev %T Fully polynomial-time approximation scheme for a~sequence $2$-clustering problem %J Diskretnyj analiz i issledovanie operacij %D 2016 %P 21-40 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2016_23_2_a1/ %G ru %F DA_2016_23_2_a1
A. V. Kel'manov; S. A. Khamidullin; V. I. Khandeev. Fully polynomial-time approximation scheme for a~sequence $2$-clustering problem. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 2, pp. 21-40. http://geodesic.mathdoc.fr/item/DA_2016_23_2_a1/
[1] A. E. Baburin, E. Kh. Gimadi, N. I. Glebov, A. V. Pyatkin, “The problem of finding a subset of vectors with the maximum total weight”, J. Appl. Ind. Math., 2:1 (2008), 32–38 | DOI | MR | Zbl
[2] E. Kh. Gimadi, Yu. V. Glazkov, I. A. Rykov, “On two problems of choosing some subset of vectors with integer coordinates that has maximum norm of the sum of elements in Euclidean space”, J. Appl. Ind. Math., 3:3 (2009), 343–352 | DOI | MR | Zbl
[3] E. Kh. Gimadi, A. V. Pyatkin, I. A. Rykov, “On polynomial solvability of some problems of a vector subset choice in a Euclidean space of fixed dimension”, J. Appl. Ind. Math., 4:1 (2010), 48–53 | DOI | MR | Zbl
[4] A. V. Dolgushev, A. V. Kel'manov, “An approximation algorithm for solving a problem of cluster analysis”, J. Appl. Ind. Math., 5:4 (2011), 551–558 | DOI | MR | Zbl
[5] A. V. Dolgushev, A. V. Kel'manov, V. V. Shenmaier, “Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters”, Tr. Inst. Mat. Mekh., 21, no. 3, 2015, 100–109 | MR
[6] A. V. Kel'manov, “Off-line detection of a quasi-periodically recurring fragment in a numerical sequence”, Proc. Steklov Inst. Math., 263, Suppl. 2 (2008), S84–S92 | MR | Zbl
[7] A. V. Kel'manov, “On the complexity of some data analysis problems”, Comput. Math. Math. Phys., 50 (2010), 1941–1947 | DOI | MR | Zbl
[8] A. V. Kel'manov, “On the complexity of some cluster analysis problems”, Comput. Math. Math. Phys., 51:11 (2011), 1983–1988 | DOI | MR | Zbl
[9] A. V. Kel'manov, A. V. Pyatkin, “Complexity of certain problems of searching for subsets of vectors and cluster analysis”, Comput. Math. Math. Phys., 49:11 (2009), 1966–1971 | DOI | MR | Zbl
[10] A. V. Kel'manov, A. V. Pyatkin, “On complexity of some problems of cluster analysis of vector sequences”, J. Appl. Ind. Math., 7:3 (2013), 363–369 | DOI | MR | Zbl
[11] A. V. Kel'manov, S. M. Romanchenko, “An FPTAS for a vector subset search problem”, J. Appl. Ind. Math., 8:3 (2014), 329–336 | DOI | MR | Zbl
[12] A. V. Kel'manov, S. A. Khamidullin, “Posterior detection of a given number of identical subsequences in a quasi-periodic sequence”, Comput. Math. Math. Phys., 41:5 (2001), 762–774 | MR | Zbl
[13] A. V. Kel'manov, S. A. Khamidullin, “An approximating polynomial algorithm for a sequence partitioning problem”, J. Appl. Ind. Math., 8:2 (2014), 236–244 | DOI | MR | Zbl
[14] A. V. Kel'manov, S. A. Khamidullin, “An approximation polynomial-time algorithm for a sequence bi-clustering problem”, Comput. Math. Math. Phys., 55:6 (2015), 1068–1076 | DOI | DOI | MR | Zbl
[15] A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “An exact pseudopolynomial algorithm for a sequence bi-clustering problem”, Abstr. XV All-Russ. Conf. “Mathematical Programming and Applications” (Ekaterinburg, Russia, Mar. 2–6, 2015), Inst. Mat. Mekh. UrO RAN, Ekaterinburg, 2015, 139–140
[16] A. V. Kel'manov, V. I. Khandeev, “A randomized algorithm for two-cluster partition of a set of vectors”, Comput. Math. Math. Phys., 55:2 (2015), 330–339 | DOI | DOI | MR | Zbl
[17] A. V. Kel'manov, V. I. Khandeev, “An exact pseudopolynomial algorithm for a problem of the two-cluster partitioning of a set of vectors”, J. Appl. Ind. Math., 9:4 (2015), 497–502 | DOI | DOI | MR
[18] A. V. Kel'manov, V. I. Khandeev, “Fully polynomial-time approximation scheme for special case of a quadratic Euclidean 2-clustering problem”, Comput. Math. Math. Phys., 56:2 (2016), 334–341 | DOI | DOI | MR | Zbl
[19] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Machine Learning, 75:2 (2009), 245–248 | DOI
[20] Bishop M. C., Pattern recognition and machine learning, Springer-Verl., New York, 2006, 738 pp. | MR | Zbl
[21] Carter J. A., Agol E., et al., “Kepler-36: a pair of planets with neighboring orbits and dissimilar densities”, Science, 337:6094 (2012), 556–559 | DOI
[22] Flach P., Machine learning: the art and science of algorithms that make sense of data, Cambridge Univ. Press, New York, 2012, 396 pp. | MR | Zbl
[23] Gimadi E. Kh., Kel'manov A. V., Kel'manova M. A., Khamidullin S. A., “A posteriori detecting a quasiperiodic fragment in a numerical sequence”, Pattern Recognit. Image Anal., 18:1 (2008), 30–42 | DOI | MR
[24] Jain A. K., “Data clustering: 50 years beyond $k$-means”, Pattern Recognit. Lett., 31:8 (2010), 651–666 | DOI
[25] James G., Witten D., Hastie T., Tibshirani R., An introduction to statistical learning, Springer-Verl., New York, 2013, 426 pp. | MR | Zbl
[26] Kel'manov A. V., Jeon B., “A posteriori joint detection and discrimination of pulses in a quasiperiodic pulse train”, IEEE Trans. Signal Process., 52:3 (2004), 645–656 | DOI | MR
[27] Steger C., Ulrich M., Wiedemann C., Machine vision algorithms and applications, Wiley-VCH, Berlin, 2007, 380 pp.