Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_2_a0, author = {V. A. Voblyi}, title = {Enumeration of labeled connected graphs with given order and number of edges}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--20}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_2_a0/} }
V. A. Voblyi. Enumeration of labeled connected graphs with given order and number of edges. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 2, pp. 5-20. http://geodesic.mathdoc.fr/item/DA_2016_23_2_a0/
[1] G. N. Bagaev, E. F. Dmitriev, “The number of connected labeled bipartite graphs”, Dokl. Akad. Nauk BSSR, 28:12 (1984), 1061–1063 | MR | Zbl
[2] V. A. Voblyi, “Wright and Stepanov–Wright coefficients”, Math. Notes Acad. Sci. USSR, 42:6 (1987), 969–974 | DOI | MR | Zbl
[3] V. A. Voblyi, “On enumeration of labelled connected graphs by the number of cutpoints”, Discrete Math. Appl., 18:1 (2008), 57–69 | DOI | DOI | MR | Zbl
[4] V. A. Voblyi, “A formula for the number of labeled connected graphs”, Diskretn. Anal. Issled. Oper., 19:4 (2012), 48–59 | MR | Zbl
[5] V. A. Voblyi, “Enumeration of labeled connected bicyclic and tricyclic graphs without bridges”, Math. Notes, 91:1 (2012), 293–297 | DOI | DOI | MR | Zbl
[6] V. A. Voblyi, “Enumeration of labeled bicyclic and tricyclic Eulerian graphs”, Math. Notes, 92:5–6 (2012), 619–623 | DOI | DOI | MR | Zbl
[7] V. A. Voblyi, “Enumeration of labeled Eulerian cacti”, Proc. XI Int. Seminar “Discrete Math. and Its Applications” (Moscow, Russia, Jan. 18–23, 2012), Izd. Mekh.-Mat. Fak. MGU, Moscow, 2012, 275–277
[8] V. A. Voblyi, “Enumeration of labeled geodetic planar graphs”, Math. Notes, 97:3 (2015), 321–325 | DOI | DOI | MR | Zbl
[9] V. A. Voblyi, A. K. Meleshko, “The number of labeled block-cactus graphs”, J. Appl. Indust. Math., 8:3 (2014), 422–427 | DOI | MR | Zbl
[10] I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, John Wiley Sons, New York, 1983 | MR | MR | Zbl
[11] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, v. 1, Elementary Functions, Nauka, Moscow, 1981 | MR
[12] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, USA, 1969 | MR | MR | Zbl
[13] F. Harary, E. M. Palmer, Graphical Enumeration, Acad. Press, New York, 1973 | MR | MR | Zbl
[14] J. Riordan, Combinatorial Identities, John Wiley Sons, New York, 1968 | MR | MR | Zbl
[15] Drmota M., Fusy E., Kang M., Kraus V., Rue J., Asymptotic study of subcritical graph classes, 24 Mar. 2010, arXiv: 1003.4699v1[math.CO] | MR
[16] Fleisher L., “Building chain and cactus representations of all minimum cuts from Hao–Orlin in the same asymptotic run time”, J. Algorithms, 33:1 (1999), 51–72 | DOI | MR
[17] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in the theory of graphs, I”, Proc. Nat. Acad. Sci. USA, 42:3 (1956), 122–128 | DOI | MR | Zbl
[18] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in the theory of graphs, III”, Proc. Nat. Acad. Sci. USA, 42:8 (1956), 529–535 | DOI | MR | Zbl
[19] Leroux P., “Enumerative problems inspired by Mayer's theory of cluster integrals”, Electron. J. Comb., 11:R32 (2004), 1–28 | MR | Zbl
[20] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W., NIST. Handbook of mathematical functions, Cambridge Univ. Press, New York, 2010, 951 pp. | MR | Zbl
[21] Vicente R., Saad D., Kabashima Y., “Error-correcting code on a cactus: a solvable model”, Europhys. Lett., 51:6 (2000), 698–704 | DOI
[22] Wright E. M., “The number of connected sparsely edged graphs. III”, J. Graph Theory, 4:4 (1980), 393–407 | DOI | MR | Zbl