On locally balanced Gray codes
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 51-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider locally balanced Gray codes. We say that a Gray code is locally balanced if each “short” subword of transition sequence contains all letters of the set $\{1,2,\dots,n\}$. The minimal length of such subwords is called the window width of the code. We show that for each $n\ge3$ there exists a Gray code with window width not greater than $n+3\lfloor\log n\rfloor$. Tab. 3, bibliogr. 10.
Keywords: Gray code, Hamilton cycle, $n$-cube, window width code.
@article{DA_2016_23_1_a3,
     author = {I. S. Bykov},
     title = {On locally balanced {Gray} codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_1_a3/}
}
TY  - JOUR
AU  - I. S. Bykov
TI  - On locally balanced Gray codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 51
EP  - 64
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_1_a3/
LA  - ru
ID  - DA_2016_23_1_a3
ER  - 
%0 Journal Article
%A I. S. Bykov
%T On locally balanced Gray codes
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 51-64
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_1_a3/
%G ru
%F DA_2016_23_1_a3
I. S. Bykov. On locally balanced Gray codes. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/DA_2016_23_1_a3/