On locally balanced Gray codes
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 51-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider locally balanced Gray codes. We say that a Gray code is locally balanced if each “short” subword of transition sequence contains all letters of the set $\{1,2,\dots,n\}$. The minimal length of such subwords is called the window width of the code. We show that for each $n\ge3$ there exists a Gray code with window width not greater than $n+3\lfloor\log n\rfloor$. Tab. 3, bibliogr. 10.
Keywords: Gray code, Hamilton cycle, $n$-cube, window width code.
@article{DA_2016_23_1_a3,
     author = {I. S. Bykov},
     title = {On locally balanced {Gray} codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {51--64},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_1_a3/}
}
TY  - JOUR
AU  - I. S. Bykov
TI  - On locally balanced Gray codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 51
EP  - 64
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_1_a3/
LA  - ru
ID  - DA_2016_23_1_a3
ER  - 
%0 Journal Article
%A I. S. Bykov
%T On locally balanced Gray codes
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 51-64
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_1_a3/
%G ru
%F DA_2016_23_1_a3
I. S. Bykov. On locally balanced Gray codes. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 51-64. http://geodesic.mathdoc.fr/item/DA_2016_23_1_a3/

[1] O. P. Godovykh, “A study of uniform Gray codes”, Proc. 50th Int. Student Sci. Conf. “Students and Progress in Science and Technology” (Novosibirsk, Russia, Apr. 13–19, 2012), NGU, Novosibirsk, 2012, 133

[2] A. A. Evdokimov, “On enumeration of subsets of a finite set”, Methods of Discrete Analysis for Solving Combinatorial Problems, 34, Izd. Inst. Mat., Novosibirsk 1980, 8–26 | MR | Zbl

[3] L. A. Korolenko, “Finding strongly uniform Gray codes”, Proc. 48th Int. Student Sci. Conf. “Students and Progress in Science and Technology” (Novosibirsk, Russia, Apr. 10–14, 2010), NGU, Novosibirsk, 2010, 162

[4] Aguilo F., Miralles A., “On the Frobenius' problem of three numbers”, Proc. 2005 Eur. Conf. Comb., Graph Theory Appl. (Berlin, Germany, Sept. 5–9, 2005), DMTCS, Nancy, 2005, 317–322

[5] Chebiryak Yu., Kroening D., “Towards a classification of Hamiltonian cycles in the 6-cube”, J. Satisf., Boolean Model. Comput., 4:1 (2008), 57–74 | MR | Zbl

[6] Dejter I. J., Delgado A. A., “Classes of Hamilton cycles in the 5-cube”, J. Comb. Math. Comb. Comput., 61 (2007), 81–95 | MR | Zbl

[7] Feder T., Subi C., “Nearly tight bounds on the number of Hamiltonian circuits of the hypercube and generalizations”, Inf. Process. Lett., 109:5 (2009), 267–272 | DOI | MR | Zbl

[8] Goddyn L., Gvozdjak P., “Binary Gray codes with long bit runs”, The Electron. J. Comb., 10:R27 (2003), 1–10 | MR

[9] Haanpää H., Östergård P. R. J., “Counting Hamiltonian cycles in bipartite graphs”, Math. Comput., 83:286 (2014), 979–995 | DOI | MR | Zbl

[10] Savage C., “A survey of combinatorial Gray codes”, SIAM Rev., 39:4 (1997), 605–629 | DOI | MR | Zbl