A capacitated competitive facility location problem
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 35-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model relative to competitive location problems. In such problems, there are two competing sides which subsequently open their facilities aiming to “capture” clients and maximize profit. In our model, we assume that capacitiy of facilities are bounded. The model is formulated as a bi-level integer mathematical program and we study the problem of obtaining its optimal (cooperative) solution. It is shown that the problem can be reformulated as a problem of maximization of a pseudo-Boolean function with the number of arguments equal to the number of places available for facility opening. We propose an algorithm for calculation of an upper bound for values that the function takes on subsets which are specified by partial $(0,1)$-vectors. Bibl. 15.
Keywords: bi-level programming, upper bound, competitive facility location.
@article{DA_2016_23_1_a2,
     author = {V. L. Beresnev and A. A. Melnikov},
     title = {A capacitated competitive facility location problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {35--50},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_1_a2/}
}
TY  - JOUR
AU  - V. L. Beresnev
AU  - A. A. Melnikov
TI  - A capacitated competitive facility location problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 35
EP  - 50
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_1_a2/
LA  - ru
ID  - DA_2016_23_1_a2
ER  - 
%0 Journal Article
%A V. L. Beresnev
%A A. A. Melnikov
%T A capacitated competitive facility location problem
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 35-50
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_1_a2/
%G ru
%F DA_2016_23_1_a2
V. L. Beresnev; A. A. Melnikov. A capacitated competitive facility location problem. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 35-50. http://geodesic.mathdoc.fr/item/DA_2016_23_1_a2/

[1] V. L. Beresnev, Discrete Location Problems and Polynomials of Boolean Variables, Izd. Inst. Mat., Novosibirsk, 2005

[2] V. L. Beresnev, “Local search algorithms for the problem of competitive location of enterprises”, Autom. Remote Control, 73:3 (2012), 425–439 | DOI | MR | Zbl

[3] V. L. Beresnev, “On the competitive facility location problem with a free choice of suppliers”, Autom. Remote Control, 75:4 (2014), 668–676 | DOI | MR | Zbl

[4] V. L. Beresnev, E. N. Goncharov, A. A. Melnikov, “Local search with a generalized neighborhood in the optimization problem for pseudo-Boolean functions”, J. Appl. Ind. Math., 6:1 (2012), 22–30 | DOI | MR | Zbl

[5] V. L. Beresnev, A. A. Melnikov, “Approximate algorithms for the competitive facility location problem”, J. Appl. Ind. Math., 5:2 (2011), 180–190 | DOI | MR | Zbl

[6] V. L. Beresnev, A. A. Melnikov, “The branch-and-bound algorithm for a competitive facility location problem with the prescribed choice of suppliers”, J. Appl. Ind. Math., 8:2 (2014), 177–189 | DOI | MR | Zbl

[7] A. V. Kononov, Yu. A. Kochetov, A. V. Plyasunov, “Competitive facility location models”, Comput. Math. Math. Phys., 49:6 (2009), 994–1009 | DOI | MR | Zbl

[8] A. A. Mel'nikov, “Randomized local search for the discrete competitive facility location problem”, Autom. Remote Control, 75:4 (2014), 700–714 | DOI | MR | Zbl

[9] A. V. Plyasunov, A. A. Panin, “The pricing problem. Part I: Exact and approximate algorithms”, J. Appl. Ind. Math., 7:2 (2013), 241–251 | DOI | MR | Zbl

[10] A. V. Plyasunov, A. A. Panin, “The pricing problem. Part II: Computational complexity”, J. Appl. Ind. Math., 7:3 (2013), 420–430 | DOI | MR | Zbl

[11] Beresnev V. L., “Branch-and-bound algorithm for a competitive facility location problem”, Comput. Oper. Res., 40:8 (2013), 2062–2070 | DOI | MR

[12] Dempe S., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 309 pp. | MR | Zbl

[13] Hammer P. L., Rudeanu S., “Pseudo-Boolean programming”, Oper. Res., 17:2 (1969), 233–261 | DOI | MR | Zbl

[14] Krarup J., Pruzan P. M., “The simple plant location problem: survey and synthesis”, Eur. J. Oper. Res., 12:1 (1983), 36–81 | DOI | MR | Zbl

[15] Von Stackelberg H., The theory of the market economy, Hedge, London, 1952, 289 pp.