Independent sets in graphs without subtrees with many leaves
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

A subtree of a graph is called inscribed if there is no three vertices in the subtree inducing a triangle in the graph. We prove that for any fixed k the independent set problem is solvable in polynomial time for each of the following classes of graphs: 1) the graphs without subtrees with $k$ leaves, 2) the subcubic graphs without inscribed subtrees with $k$ leaves, 3) the graphs with degrees not exceeding $k$ without induced subtrees with 4 leaves. Ill. 1, bibliogr. 12.
Keywords: graph, independent set, forbidden subtree
Mots-clés : polynomial algorithm.
@article{DA_2016_23_1_a0,
     author = {V. E. Alekseev and D. V. Zakharova},
     title = {Independent sets in graphs without subtrees with many leaves},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_1_a0/}
}
TY  - JOUR
AU  - V. E. Alekseev
AU  - D. V. Zakharova
TI  - Independent sets in graphs without subtrees with many leaves
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 5
EP  - 16
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_1_a0/
LA  - ru
ID  - DA_2016_23_1_a0
ER  - 
%0 Journal Article
%A V. E. Alekseev
%A D. V. Zakharova
%T Independent sets in graphs without subtrees with many leaves
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 5-16
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_1_a0/
%G ru
%F DA_2016_23_1_a0
V. E. Alekseev; D. V. Zakharova. Independent sets in graphs without subtrees with many leaves. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DA_2016_23_1_a0/