Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_1_a0, author = {V. E. Alekseev and D. V. Zakharova}, title = {Independent sets in graphs without subtrees with many leaves}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--16}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_1_a0/} }
TY - JOUR AU - V. E. Alekseev AU - D. V. Zakharova TI - Independent sets in graphs without subtrees with many leaves JO - Diskretnyj analiz i issledovanie operacij PY - 2016 SP - 5 EP - 16 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2016_23_1_a0/ LA - ru ID - DA_2016_23_1_a0 ER -
V. E. Alekseev; D. V. Zakharova. Independent sets in graphs without subtrees with many leaves. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DA_2016_23_1_a0/
[1] V. E. Alekseev, “A polynomial algorithm for finding the largest independent sets in claw-free graphs”, Diskretn. Anal. Issled. Oper., Ser. 1, 6:4 (1999), 3–19 | MR | Zbl
[2] V. E. Alekseev, D. V. Zakharova, “Independent sets in the graphs with bounded minors of the extended incidence matrix”, J. Appl. Ind. Math., 5:1 (2011), 14–18 | DOI | MR | Zbl
[3] V. E. Alekseev, D. V. Korobitsyn, “Complexity of some problems on hereditary classes of graphs”, Diskretn. Mat., 4:4 (1992), 34–40 | MR | Zbl
[4] V. E. Alekseev, D. S. Malyshev, “Planar graph classes with the independent set problem solvable in polynomial time”, J. Appl. Ind. Math., 3:1 (2009), 1–4 | DOI | MR | Zbl
[5] V. E. Alekseev, V. A. Talanov, Graphs and Algorithms. Data Structures. Computation Models, Internet-Univ. Inform. Tekhnol., BINOM. Lab. Znanii, Moscow, 2006
[6] A. V. Bankevich, D. V. Karpov, “Bounds of the number of leaves of spanning trees”, J. Math. Sci. (New York), 184:5 (2012), 564–572 | DOI | MR | Zbl
[7] D. V. Zakharova, “Weighted independent sets in graphs with bounded minors of the extended incidence matrix”, Proc. X Int. Seminar “Discrete Math. and Its Applications” (Moscow, Russia, Jan. 1–6, 2010), Izd. Mekh.-Mat. Fak. MGU, Moscow, 2010, 303–305
[8] D. S. Malyshev, “Classes of subcubic planar graphs for which the independent set problem is polynomially solvable”, J. Appl. Ind. Math., 7:4 (2013), 537–548 | DOI | MR | Zbl
[9] V. N. Shevchenko, Qualitative Problems in Integer Programming, Nauka, Moscow, 1995 | MR
[10] Erdös P., Szekeres G., “A combinatorial problem in geometry”, Compos. Math., 2 (1935), 463–470 | MR
[11] Minty G. J., “On maximal independent sets of vertices in claw-free graphs”, J. Comb. Theory, Ser. B, 28 (1980), 284–304 | DOI | MR | Zbl
[12] Sbihi N., “Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile”, Discrete Math., 29:1 (1980), 53–76 | DOI | MR | Zbl