Multiple circle coverings of an equilateral triangle, square, and circle
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 6, pp. 5-28
Voir la notice de l'article provenant de la source Math-Net.Ru
We study $k$-fold coverings of an equilateral triangle, square, and circle with $n$ congruent circles of the minimum possible radius $r^*_{n,k}$. We describe mathematical models for these problems and algorithms for their solving. We also prove optimality of the constructed coverings for certain $n$ and $k$, $1$. For $n\le15$ and $1$, we present the best found (possibly, improvable) values of circles radii ensuring the $k$-fold covering of the equilateral triangle, square or a circle. Ill. 4, tab. 3, bibliogr. 39.
Keywords:
multiple covering with congruent circles, equilateral triangle, square, circle, minimum covering problem.
@article{DA_2015_22_6_a0,
author = {Sh. I. Galiev and A. V. Khorkov},
title = {Multiple circle coverings of an equilateral triangle, square, and circle},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {5--28},
publisher = {mathdoc},
volume = {22},
number = {6},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2015_22_6_a0/}
}
TY - JOUR AU - Sh. I. Galiev AU - A. V. Khorkov TI - Multiple circle coverings of an equilateral triangle, square, and circle JO - Diskretnyj analiz i issledovanie operacij PY - 2015 SP - 5 EP - 28 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2015_22_6_a0/ LA - ru ID - DA_2015_22_6_a0 ER -
Sh. I. Galiev; A. V. Khorkov. Multiple circle coverings of an equilateral triangle, square, and circle. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 6, pp. 5-28. http://geodesic.mathdoc.fr/item/DA_2015_22_6_a0/