Multiple circle coverings of an equilateral triangle, square, and circle
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 6, pp. 5-28

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $k$-fold coverings of an equilateral triangle, square, and circle with $n$ congruent circles of the minimum possible radius $r^*_{n,k}$. We describe mathematical models for these problems and algorithms for their solving. We also prove optimality of the constructed coverings for certain $n$ and $k$, $1$. For $n\le15$ and $1$, we present the best found (possibly, improvable) values of circles radii ensuring the $k$-fold covering of the equilateral triangle, square or a circle. Ill. 4, tab. 3, bibliogr. 39.
Keywords: multiple covering with congruent circles, equilateral triangle, square, circle, minimum covering problem.
@article{DA_2015_22_6_a0,
     author = {Sh. I. Galiev and A. V. Khorkov},
     title = {Multiple circle coverings of an equilateral triangle, square, and circle},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--28},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_6_a0/}
}
TY  - JOUR
AU  - Sh. I. Galiev
AU  - A. V. Khorkov
TI  - Multiple circle coverings of an equilateral triangle, square, and circle
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 5
EP  - 28
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_6_a0/
LA  - ru
ID  - DA_2015_22_6_a0
ER  - 
%0 Journal Article
%A Sh. I. Galiev
%A A. V. Khorkov
%T Multiple circle coverings of an equilateral triangle, square, and circle
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 5-28
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_6_a0/
%G ru
%F DA_2015_22_6_a0
Sh. I. Galiev; A. V. Khorkov. Multiple circle coverings of an equilateral triangle, square, and circle. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 6, pp. 5-28. http://geodesic.mathdoc.fr/item/DA_2015_22_6_a0/