A united approach to finding the stability radii in a~multicriteria problem of a~maximum cut
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 5, pp. 30-51

Voir la notice de l'article provenant de la source Math-Net.Ru

A multicriteria variant of the maximum cut problem is considered. The lower and upper achievable bounds on the radii of various types of stability are obtained assuming that the Hölder metrics are set in the parameters space. It is shown that to calculate any of the stability radii is an intractable problem unless $\mathrm{P\ne NP}$. Bibliogr. 13.
Keywords: multi-objectiveness, graph cut, Pareto set, stability radius, Hölder metric, intractability.
@article{DA_2015_22_5_a1,
     author = {K. G. Kuzmin},
     title = {A united approach to finding the stability radii in a~multicriteria problem of a~maximum cut},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {30--51},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_5_a1/}
}
TY  - JOUR
AU  - K. G. Kuzmin
TI  - A united approach to finding the stability radii in a~multicriteria problem of a~maximum cut
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 30
EP  - 51
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_5_a1/
LA  - ru
ID  - DA_2015_22_5_a1
ER  - 
%0 Journal Article
%A K. G. Kuzmin
%T A united approach to finding the stability radii in a~multicriteria problem of a~maximum cut
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 30-51
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_5_a1/
%G ru
%F DA_2015_22_5_a1
K. G. Kuzmin. A united approach to finding the stability radii in a~multicriteria problem of a~maximum cut. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 5, pp. 30-51. http://geodesic.mathdoc.fr/item/DA_2015_22_5_a1/