Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2015_22_5_a1, author = {K. G. Kuzmin}, title = {A united approach to finding the stability radii in a~multicriteria problem of a~maximum cut}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {30--51}, publisher = {mathdoc}, volume = {22}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2015_22_5_a1/} }
TY - JOUR AU - K. G. Kuzmin TI - A united approach to finding the stability radii in a~multicriteria problem of a~maximum cut JO - Diskretnyj analiz i issledovanie operacij PY - 2015 SP - 30 EP - 51 VL - 22 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2015_22_5_a1/ LA - ru ID - DA_2015_22_5_a1 ER -
K. G. Kuzmin. A united approach to finding the stability radii in a~multicriteria problem of a~maximum cut. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 5, pp. 30-51. http://geodesic.mathdoc.fr/item/DA_2015_22_5_a1/
[1] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | MR | Zbl
[2] V. A. Emelichev, K. G. Kuzmin, “Estimating the stability radius of the vector MAX-CUT problem”, Discrete Math. Appl., 23:2 (2013), 145–152 | DOI | DOI | MR | Zbl
[3] V. A. Emelichev, K. G. Kuzmin, “Stability analysis of the efficient solution to a vector problem of a maximum cut”, Diskretn. Anal. Issled. Oper., 20:4 (2013), 27–35 | MR | Zbl
[4] V. A. Emelichev, D. P. Podkopaev, “Stability and regularization of vector integer linear programming problems”, Diskretn. Anal. Issled. Oper. Ser. 2, 8:1 (2001), 47–69 | MR | Zbl
[5] I. V. Kozlov, “On stable instances of the MIN-CUT problem”, Model. Anal. Inf. Sist., 21:4 (2014), 54–63
[6] T. T. Lebedeva, T. I. Sergienko, “Different types of stability of vector integer optimization problem: General approach”, Cybern. Syst. Anal., 44:3 (2008), 429–433 | DOI | MR | Zbl
[7] Bilu Y., Daniely A., Linial N., Saks M., “On the practically interesting instances of MAXCUT”, Proc. 30th Int. Symp. Theoret. Aspects Computer Sci. (Kiel, Germany, Feb. 27 – Mar. 2, 2013), eds. N. Portier, Th. Wilke, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, 2013, 526–537 | MR
[8] Chakravarti N., Wagelmans A. P. M., “Calculation of stability radii for combinatorial optimization problem”, Oper. Res. Lett., 23:1–2 (1998), 1–7 | DOI | MR | Zbl
[9] Emelichev V. A., Podkopaev D. P., “Quantitative stability analysis for vector problems of 0-1 programming”, Discrete Optim., 7:1–2 (2010), 48–63 | DOI | MR | Zbl
[10] Greenberg H. J., “An annotated bibliography for post-solution analysis in mixed integer programming and combinatorial optimization”, Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, ed. D. L. Woodruff, Kluwer Acad. Publ., Norwell, 1998, 97–147 | DOI | MR | Zbl
[11] Hohmann Chr., Kern W., “Optimization and optimality test for the Max-Cut problem”, Z. Oper. Res., 34:3 (1990), 195–206 | MR | Zbl
[12] Roland J., De Smet Y., Figueira J. R., “On the calculation of stability radius for multi-objective combinatorial optimization problems by inverse optimization”, 4OR, 10:4 (2012), 379–389 | DOI | MR | Zbl
[13] Van Hoesel S., Wagelmans A., “On the complexity of postoptimality analysis of 0/1 programs”, Discrete Appl. Math., 91:1–3 (1999), 251–263 | MR | Zbl